
DOS/65 SYSTEM INTERFACE GUIDE

VERSION 2.1

 (Copyright) Richard A. Leary
180 Ridge Road

Cimarron, CO 81220

This documentation and the associated software is not public domain, freeware, or
shareware. It is still commercial documentation and software.

Permission is granted by Richard A. Leary to distribute this documentation and software
free to individuals for personal, non-commercial use.

This means that you may not sell it. Unless you have obtained permission from Richard
A. Leary, you may not re-distribute it. Please do not abuse this.

CP/M is a trademark of Caldera.

VERSION 2.1A
1

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION...5

SECTION 2 - PRIMITIVE EXECUTION MODULE (PEM)..6
2.1 GENERAL CONCEPT..6
2.2 CHARACTER ORIENTED I/O COMMANDS...6

2.2.1 X = 1 (READ CONSOLE INPUT WITH ECHO).................................6
2.2.2 X = 2 (CONSOLE OUTPUT)..6
2.2.3 X = 3 (READ FROM READER)..7
2.2.4 X = 4 (WRITE TO PUNCH)..7
2.2.5 X = 5 (WRITE TO LIST DEVICE)...8
2.2.6 X = 6 (READ CONSOLE INPUT WITHOUT ECHO)..........................8
2.2.7 X = 9 (PRINT BUFFER)..8
2.2.8 X = 10 (READ BUFFER)...8
2.2.9 X = 11 (CONSOLE READY)...10
2.2.10 X = 12 (READ LIST STATUS)..10
2.2.11 X = 30 (SET LIST ECHO STATUS)...10
2.2.12 X = 31 (READ LIST ECHO STATUS)..10

2.3 SYSTEM CONTROL COMMANDS..10
2.3.1 X = 0 (WARM BOOT)...10
2.3.2 X = 7 (READ I/O STATUS)...11
2.3.3 X = 8 (SET I/O STATUS)..11
2.3.4 X = 32 (READ CLOCK)...11
2.3.5 X = 33 (READ HIGH CLOCK)..11

2.4 DISK I/O COMMANDS...11
2.4.1 X = 13 (INITIALIZE SYSTEM)..14
2.4.2 X = 14 (SELECT DRIVE)..14
2.4.3 X = 15 (OPEN FILE)...14
2.4.4 X = 16 (CLOSE FILE)...14
2.4.5 X = 17 (SEARCH FIRST)..15
2.4.6 X = 18 (SEARCH NEXT)..15
2.4.7 X = 19 (DELETE FILE)...15
2.4.8 X = 20 (READ RECORD)...16
2.4.9 X = 21 (WRITE RECORD)..16
2.4.10 X = 22 (CREATE FILE)...17
2.4.11 X = 23 (RENAME FILE)..17
2.4.12 X = 24 (READ LOG-IN STATUS)...17
2.4.13 X = 25 (READ CURRENT DRIVE)...18
2.4.14 X = 26 (SET BUFFER ADDRESS)...18
2.4.15 X = 27 (READ ALLOCATION VECTOR)..18
2.4.16 X = 28 (SET READ/WRITE STATUS)..18

VERSION 2.1A
2

2.4.17 X = 29 (READ READ/WRITE STATUS)...19
2.4.18 X = 34 (READ DCB ADDRESS)...19
2.4.19 X = 35 (TRANSLATE SECTOR)..19

SECTION 3 – SYSTEM INTERFACE MODULE (SIM)...20
3.1 GENERAL CONCEPT..20
3.2 SYSTEM INITIALIZATION FUNCTIONS...20

3.2.1 EXECUTE COLD BOOT INITIALIZATION (SIM).............................20
3.2.2 EXECUTE WARM BOOT (SIM+3)...21

3.3 CHARACTER I/O FUNCTIONS...22
3.3.1 READ CONSOLE STATUS (SIM+6)..22
3.3.2 READ FROM CONSOLE (SIM+9)..22
3.3.2 WRITE TO CONSOLE (SIM+12)...22
3.3.4 WRITE TO LIST (SIM+15)...22
3.3.5 WRITE TO PUNCH (SIM+18)..22
3.3.6 READ FROM READER (SIM+21)..23
3.3.7 READ LIST STATUS (SIM+45)..23

3.4 DISK I/O AND CONTROL FUNCTIONS..23
3.4.1 HOME SELECTED DRIVE (SIM+24)...23
3.4.2 SELECT DRIVE (SIM+27)..23
3.4.3 SET TRACK (SIM+30)..24
3.4.4 SET SECTOR (SIM+33)...24
3.4.5 SET BUFFER ADDRESS (SIM+36)...24
3.4.6 READ SECTOR (SIM+39)..24
3.4.7 WRITE SECTOR (SIM+42)..25
3.4.8 TRANSLATE SECTOR (SIM+51)..25

3.5 READ CLOCK (SIM+48)..26
3.6 CONSOLE DEFINITION BLOCK (SIM+54)...27

3.6.1 DATA DEFINITIONS..27
3.6.2 USAGE..29
3.6.3 STANDARD CHARACTERS..30

3.7 DCB CONTENTS...30
3.7.1 NUMBER OF SYSTEM TRACKS (NSYSTR)..................................31
3.7.2 NUMBER OF RECORDS (NRECRD)..32
3.7.3 ALLOCATION BLOCK SIZE CODE (BLKSCD)...............................32
3.7.4 MAXIMUM BLOCK NUMBER (MAXBLK)..32
3.7.5 MAXIMUM DIRECTORY NUMBER (MAXDIR)................................33
3.7.6 ADDRESS OF ALLOCATION MAP (ALCMAP)...............................33
3.7.7 CHECK FLAG (CHKFLG)...34
3.7.8 ADDRESS OF CHECKSUM MAP (CHKMAP).................................34

APPENDIX A - SYSTEM MODULE LOCATION ON DISK...35

VERSION 2.1A
3

APPENDIX B - DOS/65 MEMORY USAGE..36
B.1 DOS/65 PECULIAR LOCATIONS..36

B.1.1 FIXED LOCATIONS...36
B.1.2 VARIABLE LOCATIONS..37

B.2 RESTRICTED LOCATIONS..37

APPENDIX C - FLAGS AND INTERRUPTS...39
C.1 CPU FLAGS...39
C.2 INTERRUPTS..39

APPENDIX D - STANDARD INTERCHANGE FORMATS..40

APPENDIX E - DEBLOCKING..43
E.1 GENERAL..43
E.2 PERFORMANCE..43
E.3 SAMPLE CODE..43

VERSION 2.1A
4

SECTION 1 - INTRODUCTION

DOS/65 is a powerful and flexible operating system for the 65XX series of
microprocessors. Most of its power is realized as a result of the ease with which user
programs can use the console and file oriented I/O features of the PRIMITIVE
EXECUTION MODULE (PEM) portion of the operating system. The flexibility on the
other hand is realized through use of a software structure which places all of the
hardware peculiar device control routines in a SYSTEM INTERFACE MODULE (SIM)
which can be modified by the user to conform to his peculiar hardware and software
environment. SIM allows definition both of the disk characteristics through use of a
DISK CONTROL BLOCK (DCB) and the console characteristics through use of a
CONSOLE DEFINITION BLOCK (CDB).

PEM and SIM are thus the two key interfaces in DOS/65 which the programmer must
understand in order to effectively use DOS/65. Each of these two interfaces will be
discussed in the following sections.

VERSION 2.1A
5

SECTION 2 - PRIMITIVE EXECUTION MODULE (PEM)

2.1 GENERAL CONCEPT

Each time PEM is entered it performs a single function and upon completion of that
function executes an RTS. Thus, PEM is normally entered as a subroutine. The specific
function performed is determined by the number contained in the X register of the 6502.

In addition to the contents of the X register, the value of the A, and in some cases also
the Y, register upon entry determines not what is done but rather to what or with what
the function specified by the X register is performed. Similarly, upon exit the A register
contains the result if the result is a single byte quantity such as an ASCII character, or
for 16 bit results the A and Y register together contain the result.

Figure 2-1 summarizes the register conditions at entry to PEM and upon return. Each
command is discussed in the following sections.

2.2 CHARACTER ORIENTED I/O COMMANDS

Those commands which involve transfer of single ASCII characters are described in the
following sections. The contents of the CONSOLE DEFINITION BLOCK referred to in
this section are defined in Section 3.6.

2.2.1 X = 1 (READ CONSOLE INPUT WITH ECHO)

This command returns a single ASCII character in A from the console input device. If a
null ($00) then the Z flag is set. If the character is a printable character ($20 through
$7F) it will be sent to the console output. The CR ($0D), LF ($0A), and HT (ctl-i or $09)
characters will also be output, however, the HT echo will be expanded using blanks
($20) to the next modulo-8 column. The actual character returned by PEM in this case
will be the HT, not the blanks resulting from the expansion. No other control characters
are echoed. While SIM is supposed to provide characters having the MSB set to zero,
PEM neither checks for zero nor sets that bit to zero. If the LIST ECHO flag is set, the
character (after expansion) will also be sent to the list device.

2.2.2 X = 2 (CONSOLE OUTPUT)

This command causes the single ASCII character in A to be sent to the console output
device. All characters ($00 to $FF) will be output exactly as input to PEM except for HT

VERSION 2.1A
6

($09) which is expanded using blanks ($20) to the next modulo-8 column. Note that the
MSB of the character being output is not checked for zero nor is it automatically set to
zero. If the LIST ECHO flag is set, the character (after expansion) will also be sent to
the list device.

Each time a character is sent to the console the READ CONSOLE STATUS routine in
SIM is executed. If a key has been pressed it is read by PEM and saved for later use by
a READ CONSOLE INPUT command (X = 1 or X = 6). However, if the key is a (ctl-s)
PEM does not save the (ctl-s) but waits for a second key to be pressed. If that second
key is a (ctl-c), a WARM BOOT is executed by jumping to SIM+3. All other keys are not
saved but return control to the calling routine. This last feature allows the output to be
"held" and thus is useful for viewing lengthy outputs on a non-permanent console
output device such as a CRT.

INPUT OUTPUT

REGISTER SINGLE BYTE
PARAMETER

TWO BYTE
PARAMETER

SINGLE BYTE
RESULT

TWO BYTE
RESULT

A Parameter (if any) Low Byte Result (if any) Low Byte
Y X High Byte X High Byte
X Function Number Function Number X X
S See note 2 See note 2 Unchanged Unchanged

P X X

Z=1 IFF A=0
N==1 IFF A<0

D=0
See note 3

Z=1 IFF A=0
N==1 IFF A<0

D=0
See note 3

NOTES
1. X = “don’t care” or indeterminate.
2. While S upon exit from PEM is unchanged (except for the action of the RTS) its value at input should be
large enough to ensure that no stack underflow results or that the stack intrudes into any page one
reserved areas such as the default buffer. While it is estimated that PEM uses less than 32 bytes of stack
space, the total which should be allowed depends upon the design of SIM. The 88 bytes available above
the default buffer should be adequate for most user programs.
3. The setting of the I flag upon exit from PEM is purely a function of SIM. PEM itself does not alter that
flag. All flags not noted (C, B, and V) have indeterminate values upon return.
4. This table is valid only for X greater than zero and less than or equal to the maximum value. For all
values of X greater than the maximum allowable only the S and P output conditions are valid. For X equal
to zero there is no "return".

Figure 2-1 PEM Register Usage

2.2.3 X = 3 (READ FROM READER)
This command causes a single ASCII character to be read from the reader device. As
was the case for the console the MSB is neither checked nor altered by PEM.

2.2.4 X = 4 (WRITE TO PUNCH)
This command causes a single ASCII character to be sent to the punch device. Again

VERSION 2.1A
7

the MSB is neither checked nor altered by PEM.

2.2.5 X = 5 (WRITE TO LIST DEVICE)
Similar to the action of the previous output commands, this command causes a single
ASCII character to be sent to the list device. The MSB is neither checked nor altered by
PEM. All characters (including the HT) are output exactly as input to PEM.

2.2.6 X = 6 (READ CONSOLE INPUT WITHOUT ECHO)
This command functions exactly like the X = 1 command except that the character is
not echoed either to the console output or list device.

2.2.7 X = 9 (PRINT BUFFER)
This command causes the ASCII string pointed to by the A (low) and Y (high) registers
to be sent to the console output device. The string may be up to 256 characters long.
Output will only be terminated when a "$" is encountered in the string or after the 256th
character. As was the case for the single character output commands, the HT character
will be expanded to a modulo-8 column. The output string will also be sent to the list
device if the LIST ECHO flag is set.

2.2.8 X = 10 (READ BUFFER)
This command causes an entire line of data to be read from the console input device,
stored in a buffer and echoed to the console output device. The read is terminated by
entry of a carriage return (CR) at the console. Upon entry the A (low) and Y (high)
registers point to the start of the buffer. The buffer is organized in a unique way. Upon
entry the byte pointed to by A and Y contains the maximum number of characters in the
buffer. That value is not changed during execution. Upon exit the second byte contains
the number of characters in the buffer. The characters themselves begin at the third
byte. A typical buffer at exit would be as shown in Figure 2-2.

POSITION CONTENTS COMMENTS
1 32 At entry contains maximum length (32 in this use).

Is the byte pointed to by A & Y at entry
2 3 At exit contains number of characters input
3 I First character
4 N Second character
5 C Last character

Figure 2-2 READ BUFFER

Several special characters cause specific buffer editing actions to be executed if
entered from the console during execution of this command. Those characters and the

VERSION 2.1A
8

resulting action are:

(ctl-i) Horizontal Tab
As was the case for the single character commands, the echo consists of
enough blanks to move the cursor to a modulo-8 column.

(ctl-r) Line Repeat
This character is not entered into the buffer nor is it echoed. It causes a
(CR) to be sent to the console followed by enough FORWARD SPACE
(SIM+57) characters to skip over any characters printed on the current
line before the READ BUFFER command was executed. A CLEAR TO
END OF LINE (SIM+56) character is then sent to the console followed by
the complete contents of the buffer. All characters are output literally
except control characters and the (ctl-i) which is expanded to a modulo-8
column using blanks. All other control characters are output as an
INVERT ATTRIBUTES (SIM+59) character followed by the character
resulting from "oring" the character with an ASCII @ and then followed by
a NORMAL ATTRIBUTES (SIM+58) character. This command is most
useful to check that buffer contents are correct or to see what the buffer
contents are after character deletes.

(delete) Character Delete
This character is not entered into the buffer nor is it echoed. The (delete)
causes the last character in the buffer to be deleted. The (delete) also
causes one or more BACKSPACE (SIM+55), $20, BACKSPACE (SIM
+55) sequences to be sent to the console to erase the deleted character.

(ctl-x) Line Cancel
This character is not entered into the buffer nor is it echoed. It causes a
(CR) to be sent to the console followed by enough FORWARD SPACE
(SIM+57) characters to skip over any characters printed on the current
line before the READ BUFFER command was executed. A CLEAR TO
END OF LINE (SIM+56) character is then sent to the console. It then
causes the buffer to be emptied. This command is most useful if an input
line is in error but is too long to be conveniently corrected using the
(delete).

(ctl-e) Physical (CR) and (LF)
This character is not entered into the buffer nor is it echoed. It causes a
(CR)(LF) combination to be sent to the console. This command is most
useful with console devices having limited line lengths and no automatic
end of line (CR)(LF) feature.

(ctl-p) Toggle LIST ECHO
This character is not entered into the buffer nor is it echoed. It causes the

VERSION 2.1A
9

LIST ECHO flag to be toggled (on to off or off to on).

(ctl-c) WARM BOOT
If this character is the first character in the buffer, it causes a WARM
BOOT to be executed. If not the first character in a line, then it is handled
as a normal character and is entered into the buffer.

2.2.9 X = 11 (CONSOLE READY)
This commands checks to see if a console input is waiting. If an input is ready A is set
to a non-zero value and Z is cleared. If no character is ready then A is set to zero and Z
is set. As was the case for the CONSOLE OUTPUT (X = 2) function, a (ctl-s) will "hold"
execution until another character is entered. In this instance, the second key will cause
a "not-ready" condition upon return. If the second key is a (ctl-c) a WARM BOOT will be
executed.

2.2.10 X = 12 (READ LIST STATUS)
This commands checks to see if the list device can accept another output character. If
a character can be accepted then A is set to a non-zero value and Z is cleared. If a
character can not be accepted then A is set to zero and Z is set.

2.2.11 X = 30 (SET LIST ECHO STATUS)
The contents of the A register are stored in the LIST ECHO flag. If the MSB of that
value is 1, then characters output using the CONSOLE OUTPUT (X = 2) function also
will be sent to the list Device. If the MSB is a 0 then the characters will not be output to
the list device. Note that the LIST ECHO flag does not affect output using the LIST
OUTPUT (X = 5) function.

2.2.12 X = 31 (READ LIST ECHO STATUS)
Upon return, the A register contains the current value of the LIST ECHO flag. The N
flag will reflect the value of the MSB. Thus if N = 1 (i.e., minus), then the list echo is
enabled. If N = 0 (i.e., plus), then the list echo is disabled.

2.3 SYSTEM CONTROL COMMANDS
These commands control several general aspects of the system. These commands do
not involve actual disk I/O operations.

2.3.1 X = 0 (WARM BOOT)
The warm boot command is unique in that it does not return to the calling program. Its

VERSION 2.1A
10

primary function is to reload CCM and PEM from drive A and then execute CCM. The
default drive will remain unchanged. This command is most often used to reinitialize the
system after a transient program has completed execution. The JMP at $100 will also
cause a warm boot to be executed, however, that jump goes directly to SIM+3 without
using PEM.

2.3.2 X = 7 (READ I/O STATUS)
This command returns the contents of location $106 in the A register. DOS/65 does not
use this byte, thus it can be used by the user to hold an I/O device mapping vector or
for any other purpose. The standard version of SIM does set this byte to zero when a
cold boot is executed.

2.3.3 X = 8 (SET I/O STATUS)
This command stores the contents of the A register at location $106. As discussed
above, neither this action nor the value of the contents of $106 are significant to
DOS/65.

2.3.4 X = 32 (READ CLOCK)
This command calls the real time clock routine at SIM+48 (see section 3.5) and saves
the three values returned by SIM in an internal PEM storage area. Upon exit from PEM,
the A register will contain the low byte of the three byte real time clock counter and Y
will be zero if a clock is present or will be 128 if no clock is present. If Y is 128 then the
contents of the A register are meaningless.

2.3.5 X = 33 (READ HIGH CLOCK)
This command returns the middle byte of the real time clock in the A register and the
high byte in Y. Since this command does not issue a new call to SIM it must be used
only after a READ CLOCK (X = 32) command has been executed. If the last READ
CLOCK (X=32) command returned with Y equal to 128 then the return values from this
command are meaningless.

2.4 DISK I/O COMMANDS
These commands control the disk I/O operations of DOS/65. Two concepts are central
to use of these commands. The first is that of a FILE CONTROL BLOCK (FCB), A FCB
is a 33 byte region which is initialized by the user and then is used by PEM to control
disk I/O. The function of each byte in the FCB is discussed in detail in the System
Description and is presented in summary form in Figure 2-3.

Byte Mnemonic Explanation

VERSION 2.1A
11

0 D DRIVE number, i.e., 0 through 7
1 N
2 N
3 N
4 N
5 N
6 N
7 N
8 N

Byte 1 is the first character of file NAME where full
name is of the form NNNNNNNN.TTT
Name is blank filled to byte 8 if actual name is less than
eight characters long.

9 T
10 T
11 T

Byte 9 is the first character of the file name extension
or TYPE, i.e., the three characters after the “.”. This is
also blank filled if needed.

12 E EXTENT
13 Not used
14 Not used
15 R NUMBER of RECORDS in binary
16 B
17 B
18 B
19 B
20 B
21 B
22 B
23 B
24 B
25 B
26 B
27 B
28 B
29 B
30 B
31 B

BLOCK NUMBERS

32 X NEXT RECORD in binary
Figure 2-3 FCB Contents

Each disk has a directory which contains a user defined number of directory entries
(normally 64 for most floppy diskette formats) numbered starting with 0. Each directory
entry corresponds to one or more extents of a file. Each extent references up to 16K
(K=1024) bytes as individual 128 byte records. The data is organized in lK, 2K, 4K, 8K
or 16K byte blocks as a function of the DCB contents in SIM. The number of each block
assigned to a directory entry is stored in that directory. Since $00 is not a legal block
number for user files its appearance in a directory entry means that no block is
assigned for that particular portion of the directory.

VERSION 2.1A
12

The aspects of the use of the FCB that should be remembered are:

- User must fill in

DRIVE (Byte 0) $0 = default drive (1 to 8 selects designated drive minus
1)

NAME (Bytes 1-8) Upper Case ASCII

TYPE (Bytes 9-11)

EXTENT (Byte 12) (0 to $1F)

before searching for, opening, closing, deleting, or creating a file. Special actions
for FCB use when renaming a file are discussed under that command. While not
absolutely necessary, all unused bytes should be set to 0 before any functions
are executed.

- DOS/65 fills in

NUMBER RECORDS (Byte 15)

BLOCK NUMBERS (Bytes 16-31)

when a file is opened and maintains those values during read or write operations
and updates the disk directory if a new extent is automatically opened or when a
file is closed.

- User must set

NEXT RECORD (Byte 32)

before any read or write. Sequential sector read or writes do not require any user
action as the NEXT RECORD will automatically be incremented after each read
or write operation.

The second key concept is that of a sector buffer. This 128 byte block is the region in
which DOS/65 does all disk reads and writes. This includes all directory reads required
during operation as well as data reads or writes. The fact that two types of uses are
made of the buffer is significant since the buffer contents may be altered by normal
DOS/65 actions other than user commanded reads or writes.

VERSION 2.1A
13

2.4.1 X = 13 (INITIALIZE SYSTEM)
This command executes the following sequence:

- Clear log-in status so that no drive is considered on-line.

- Log-in drive A and select it as the default drive.

- Set drive A status to read/write

The effect of these actions is to clear the disk allocation maps and directory checksums
which DOS/65 maintains but then to set them to match the disk currently in Drive A.
Those maps and checksums are key elements in allocating disk space when writing
new data and in verifying that the disk in the drive being addressed has not been
changed since it was last logged-in.

2.4.2 X = 14 (SELECT DRIVE)
The drive specified by the contents of the A register ($00 through $07) is selected as
the default drive. If that drive is not logged-in, it is logged-in and set to a read/write
mode.

CAUTION
If the specified drive is already logged-in, no check is made during
execution of this command to ensure that the disk has not been
changed. (See Section 2.4.1.) However if any write operation is
attempted to a drive whose directory checksum map entries do not
match the checksums of the directory entries on the disk, then a
PEM error message will be sent to the console and appropriate user
action requested unless the DCB for that drive has disabled
directory checksum verification. Any read operation to such a drive
will be allowed.

2.4.3 X = 15 (OPEN FILE)
The file matching the DRIVE, NAME, TYPE and EXTENT fields of the FCB pointed to
by A (low) and Y (high) will be initialized by DOS/65. If the file is a valid file and is
successfully opened, the A register upon return will contain the directory number
modulo 4 (0 to 3) of the file and N will be O. If the file is not successfully opened, the
value returned in A will be 255 ($FF) and N will be 1. This command will fill in the
NUMBER RECORDS byte and the BLOCK NUMBER FIELDS in the FCB.

2.4.4 X = 16 (CLOSE FILE)
The file matching the DRIVE, NAME, TYPE, AND EXTENT fields of the FCB pointed to

VERSION 2.1A
14

by A (low) and Y (high) will be closed by DOS/65.

CAUTION
The file must be "open" for this command to execute properly.

This command updates the directory entry on the disk and if successful returns the
directory number modulo 4 (0 to 3) in the A register and clears N to 0. If not successful,
the contents of the A register upon return will be 255 ($FF) and N will be set.

2.4.5 X = 17 (SEARCH FIRST)
The file extent matching the DRIVE, NAME, TYPE, and EXTENT fields of the FCB
pointed to by A (low) and Y (high) will be searched for in the directory. If found, the
directory number modulo 4 (0 to 3) will be returned in the A register and N cleared to 0.
A '?' in any position of the NAME and TYPE fields will match any character in the
directory. The contents of the buffer will contain the directory entry beginning at
location:

BUFFER + ((A) *32)

Example : IF (BUFFER = $128) and (A = 1)
Then directory begins at $148

If not found, the returned value in A will be 255 ($FF) and N will be set to 1.

2.4.6 X = 18 (SEARCH NEXT)
The next file extent matching the DRIVE, NAME, TYPE, and EXTENT fields of the FCB
pointed to by A (low) and Y (high) will be searched for. If found, the directory number
modulo 4 (0 to 3) will be returned in A and N will be cleared. As discussed above, the
directory is located in the BUFFER at a position determined by the directory number. If
not found, A will be set to 255 ($FF) and N will be set to a 1.

NOTE
This command is only guaranteed to be meaningful if the last previous
disk I/O command was X = 17 (SEARCH FIRST).

2.4.7 X = 19 (DELETE FILE)
The file matching the DRIVE, NAME, and TYPE fields of the FCB pointed to by A (low)
and Y (high) will be deleted if it exists. The return value from the command will always
be 255 ($FF) and N will always be set.

VERSION 2.1A
15

2.4.8 X = 20 (READ RECORD)
The record specified by the NEXT RECORD field of the FCB pointed to by A (low) and
Y (high) will be read from the disk into the current BUFFER. The file must be open. The
following return codes are used to signify the results of the read operation.

A Value Meaning for READ
0 Read successful
1 Physical end of file

2

Attempt to read data from an unwritten block. This return will usually
only occur when the user is performing random reads from a file and
the block entry specified by the value of NEXT RECORD is empty, i.e.,
$00

255 Error

The NEXT RECORD field will be automatically incremented by DOS/65 after the read
and the next extent opened if necessary.

Random reads will require the user to open and close the proper extent using explicit
open and close commands. The following equations are used to calculate the extent
and record number of the nth random record:

EXTENT = INTEGER.PART.OF(n/128)
RECORD = n-(EXTENT*128)

2.4.9 X = 21 (WRITE RECORD)
The record specified by the NEXT RECORD field of the FCB pointed to by A (low) and
Y (high) will be written to the disk from the current BUFFER. The file must be open. The
following return codes are used to signify the results of the write operation where MAX
is as defined in section 2.4.8.

A Value Meaning for WRITE
0 Write successful
1 Extending error, i.e., next record is > 127
2 Disk full

255 Error

As was the case for the READ RECORD function, the NEXT RECORD field will be
automatically incremented after the write and if necessary a new extent will be
automatically opened.

CAUTION
If a new extent is automatically opened by DOS/65 after a write

VERSION 2.1A
16

operation, the contents of the write buffer will be destroyed.

2.4.10 X = 22 (CREATE FILE)
The file extent matching the DRIVE, NAME, TYPE and EXTENT fields of the FCB
pointed to by A (low) and Y (high) will be created and the directory marked as empty. If
successful, the directory number modulo 4 (0 to 3) will be returned in the A register and
N cleared to 0. If the attempt is unsuccessful, the A register will be set to 255 and N set
to 1.

CAUTION
Creation of a file using a FCB which contains illegal characters or
lower case alphabetic characters could result in a file which cannot
be executed or manipulated using CCM.

2.4.11 X = 23 (RENAME FILE)
This command is a unique command in that the normal FCB format is modified. For this
command the file corresponding to the DRIVE, NAME, and TYPE fields of the FCB
pointed to by A (low) and Y (high) is renamed to correspond to the NAME and TYPE
contained at location FCB+16. If the following FCB were pointed to by A and Y upon
execution of this command, the file OLDNAME.ASM would be renamed to
NEWFILE.BAK.

$0 0 L D N A M E $20 A S M $0 $0 $0 $0

$0 N E W F I L E $20 B A K $0 $0 $0 $0

CAUTION
If the old file name or type portions of the FCB contain a ?, all files
which match the resulting AFN will be changed to match the new file
name and type . The consequences of that action could include
having identical names. For example, FILE.A and FILE.B would be
renamed to FILE.A if the following FCB were used:

$0 F I L E $20 $20 $20 $20 ? $20 $20 $0 $0 $0 $0

$0 F I L E $20 $20 $20 $20 A $20 $20 $0 $0 $0 $0

2.4.12 X = 24 (READ LOG-IN STATUS)
This command returns the drive log-in status byte in the A register. Bit 0 corresponds to
drive A, bit 1 to B, bit 2 to C, and so on up through bit 7 which corresponds to H. If a
given bit is zero, the corresponding drive is not logged-in, if a one the drive is logged-in.

VERSION 2.1A
17

CAUTION
If the value of a bit is a 1, it does not mean that the disk in the
corresponding drive has not been changed. For additional details
see sections 2.4.1 and 2.4.2.

2.4.13 X = 25 (READ CURRENT DRIVE)
This command returns in the A register the drive number (0 = A, 1 = B, 2 = C,..., or 7 =
H) corresponding to the current default drive.

2.4.14 X = 26 (SET BUFFER ADDRESS)
This command sets the sector buffer starting address to the value in the A (low) and Y
(high) registers. Caution must be exercised in using this command to ensure that
portions of DOS/65 (PEM and SIM especially) are not destroyed by incorrect placement
of the buffer.

2.4.15 X = 27 (READ ALLOCATION VECTOR)
This command returns in the A (low) and Y (high) registers the address of the beginning
of the block allocation map for the default drive. DOS/65 maintains a map for each drive
which indicates the allocation status of each block. The blocks are numbered from 0 to
MAXBLK and are mapped into the following bit and byte of the map.

BYTE = INTEGER.PART.OF(BLOCK/8)

BIT = 7-(BLOCK-(BYTE*8))

NOTE
Directory blocks will always show as allocated.

CAUTION
Alteration of the contents of the map could result in over writing of
the contents of the affected blocks.

2.4.16 X = 28 (SET READ/WRITE STATUS)
This command causes the byte contained in the A register to be transferred to the read/
write status byte maintained by PEM. Bit 0 corresponds to drive A, bit 1 to B, bit 2 to C,
and so on up through bit 7 which corresponds to H. If the value of the corresponding bit
is a 0 then the corresponding drive will be set to a read/write mode, if a 1; then the drive
is set to a read only mode.

VERSION 2.1A
18

2.4.17 X = 29 (READ READ/WRITE STATUS)
This command returns the read/write status byte in the A register. The value of each bit
is determined as discussed in section 2.4.16.

2.4.18 X = 34 (READ DCB ADDRESS)
This command returns in the A (low) and Y (high) registers the address of the DCB for
the default drive.

2.4.19 X = 35 (TRANSLATE SECTOR)
This command calls the TRANSLATE SECTOR (SIM+51) routine in SIM using the
values in the A (low) and Y (high) registers as the logical sector number. This command
then returns in the A (low) and Y (high) registers the physical sector calculated by SIM
for the default drive.

VERSION 2.1A
19

SECTION 3 – SYSTEM INTERFACE MODULE (SIM)

3.1 GENERAL CONCEPT

Unlike PEM which executes a function determined by the contents of the X register,
SIM executes eighteen different functions based upon the address used to enter SIM,
provides a block of data that defines the users console characteristics (the CONSOLE
DEFINITION BLOCK or CDB), provides a block of data which defines the
characteristics of each disk in the system (the DISK CONTROL BLOCK or DCB), and
contains the disk allocation and checksum maps maintained by PEM. Figure 3-1 lists
the function entry points. Each function, the DCB, the CDB, and the allocation and
checksum maps are described in the following sections.

The X register has no meaning upon entry to SIM and except for the READ CLOCK
function also has no meaning upon exit from SIM. The A register is the primary SIM
input data register except for those functions requiring a sixteen bit parameter for which
the A register holds the low byte of the parameter and the high byte is in the Y register.
The A register is also the primary SIM output data register but just as was the case for
inputs, both the A and Y registers are used for sixteen bit parameters.

During execution of all commands SIM may use all CPU registers and the stack. Exit
from SIM is accomplished by execution of a RTS (except for COLD and WARM
BOOTS) hence each function operates like a subroutine. For those functions which
require data to be returned, the only thing that SIM must guarantee is the value in the
data register(s) since the CPU flags are not checked by PEM or any other calling
program but rather the value in the register(s) is checked. Thus, for example, if a return
value in A should be 0 to indicate that no error occurred, PEM does not rely upon the Z
flag being set but will test A to see if its contents are zero.

3.2 SYSTEM INITIALIZATION FUNCTIONS

These two functions do not return to the calling program but instead set up the system
and then execute CCM.

3.2.1 EXECUTE COLD BOOT INITIALIZATION (SIM)

The function is executed by BOOT after CCM, PEM, and SIM are loaded into memory
by BOOT. Its primary function is to set-up the JMP's at $100 to SIM+3 and at $103 to
PEM, to set the buffer to the default location ($128), and to set the default drive as drive
A. It must also initialize the stack, CPU flags (particularly I), and the system I/O devices.

VERSION 2.1A
20

The exit from this function is a JMP to CCM with the number corresponding to the
default drive (normally 0 for drive A) in the A register. Note that while the SIM listing
shows an elaborate process of prompts and user inputs which allows the user to specify
the number of drives, this is not necessary since the number of drives could be included
in the assembly code. The advantage of having a user input is that SIM does not have
to change if the number of drives changes.

3.2.2 EXECUTE WARM BOOT (SIM+3)

This function which is normally entered either via the JMP at $100 or via execution of
the WARM BOOT (X = 0) command in PEM, must accomplish the following steps:

Set Interrupt Vector/JMP (if used)
Set Stack and CPU Flags
Read CCM and PEM from Drive A
Set up JMPs at $100 and $103
Set Buffer to Default ($128)
Jump to CCM with Default Drive Number in A

It is important to note that this function does not read SIM into memory from the disk
and does not initialize the I/O devices.

Entry Address Function
SIM EXECUTE COLD BOOT

SIM+3 EXECUTE WARM BOOT
SIM+6 READ CONSOLE STATUS
SIM+9 READ FROM CONSOLE
SIM+12 WRITE TO CONSOLE
SIM+15 WRITE TO LIST
SIM+18 WRITE TO PUNCH
SIM+21 READ FROM READER
SIM+24 HOME SELECTED DRIVE
SIM+27 SELECT DRIVE
SIM+30 SET TRACK
SIM+33 SET SECTOR
SIM+36 SET BUFFER ADDRESS
SIM+39 READ SECTOR
SIM+42 WRITE SECTOR
SIM+45 READ LIST STATUS
SIM+48 READ CLOCK
SIM+51 TRANSLATE SECTOR

Figure 3-1 SIM Functions

VERSION 2.1A
21

3.3 CHARACTER I/O FUNCTIONS
The following functions handle all single character I/O operations.

3.3.1 READ CONSOLE STATUS (SIM+6)
This function tests the console input device and if an input is ready then a non-zero
byte is returned in A. If no input is ready the returned value in A is set to zero. This
function does not actually read the input.

3.3.2 READ FROM CONSOLE (SIM+9)
This function reads a single ASCII character from the console input device. If no input is
ready, this routine must wait until an input is ready. The MSB of the character (Bit 7) is
set to zero and the character is returned in the A register. This character must not be
echoed by SIM or by the software or hardware called by SIM.

3.3.2 WRITE TO CONSOLE (SIM+12)

This function writes the single ASCII character in the A register to the console output
device. The A register contents need not be preserved.

CAUTION
PEM does not filter out any control characters except for HT ($9 or
ctl- i) and all characters whose MSB is 1 are also not filtered. SIM or
the routines called by SIM must filter out any potentially dangerous
characters.

3.3.4 WRITE TO LIST (SIM+15)
This function writes the single ASCII character in the A register to the list device. This
function should behave exactly like the WRITE TO CONSOLE function at SIM+12. The
one difference is that if this routine is called from the PEM WRITE TO LIST DEVICE (X
= 5) routine, then the HT ($9 or ctl-i) character will not have been expanded. If on the
other hand this routine has been called because the LIST ECHO flag was set and
characters are being output from the PEM CONSOLE OUTPUT (X = 2) routine, then
the HT characters will have been expanded prior to the call to WRITE TO LIST (SIM
+15). While standard DOS/65 programs do not require that this routine include a HT
expansion routine, it is recommended that such a capability be included.

3.3.5 WRITE TO PUNCH (SIM+18)
This routine transfers a single byte to the users punch device. Note that this may
actually be almost any device but is usually a serial output device such as a cassette

VERSION 2.1A
22

recorder or a modem. Note that no standard DOS/65 program uses this entry and PEM
does not alter the byte passed through it to this SIM function.

3.3.6 READ FROM READER (SIM+21)
This routine returns a single byte to PEM in the A register. Like the punch output
routine, this function is not used in any standard DOS/65 programs. PEM also does not
alter the byte when returned to user through PEM.

3.3.7 READ LIST STATUS (SIM+45)
This routine returns a zero if the list device can not accept another input and a non-zero
value if it can accept another input. This routine is intended for use in such programs as
spoolers where it is desired to output data to the list device but not to suffer the delays
possible if the WRITE TO LIST DEVICE routine is called and then must wait for the
device to be ready to accept a character. This entry is not used by CCM or the standard
system transients.

3.4 DISK I/O AND CONTROL FUNCTIONS
The following functions control the disk subsystem in response to PEM file oriented
commands.

3.4.1 HOME SELECTED DRIVE (SIM+24)
This routine causes the currently selected drive to immediately move to the home
position (Track 0). This routine has no return value requirements.

3.4.2 SELECT DRIVE (SIM+27)
This routine sets the drive for all following operations to the value of the A register (0 for
drive A, 1 for B, 2 for C, and so on up to 7 for H). It is recommended that the drive not
be physically selected until a home, read, or write command is received by SIM. This
routine must return a value that is the address of the DCB for the selected drive. This
address must use the standard DOS/65 convention which places the low byte of the
address in A and the high byte of the address in Y. If the selected drive is not present in
the system both A and Y should be set to zero.

The following example shows one way to code SELECT DRIVE for a system having
two drives:

SELDSK CMP #2 see if too big
BCS NTVALD it is!!!
STA DISKNO save for later use

VERSION 2.1A
23

ASL A multiply by two
TAX make an index
LDA DCBTBL,X get address low
LDY DCBTBL+1,X and high
RTS

NTVALD LDA #0 set ay to 0
TAY
RTS

DCBTBL .WOR DCB0,DCB1 addresses of dcbs

3.4.3 SET TRACK (SIM+30)
This routine should set the track for all following disk I/O operation to the value in the A
(low) and Y (high) registers. This value will range from 0 to a number determined by
PEM as a function of the DCB contents. This routine has no return value requirements.

3.4.4 SET SECTOR (SIM+33)
This routine sets the sector number (logical record number) for all following disk I/O
operations to the value in the A (low) and Y (high) registers. This value is only a
physical sector number if the physical sector size is one record (128 bytes) long. The
range of logical record numbers is determined by the DCB for the selected drive and
will range from 0 to records.per.track-1 (NRECRD-1). The value passed to this function
is also affected by the action of the TRANSLATE SECTOR function at SIM+51. For
example, an eight inch single sided, single density disk uses a translation table that
converts the logical sector number to a physical sector number in the range of 1 to
NRECRD while also incorporating interleave for performance enhancement.

CAUTION
Some transients are designed only for the IBM standard single
density format and use direct physical, 128 byte sector I/O. If general
use is planned they may need to be converted to use of the full
capability of SIM including the de-blocking described in APPENDIX
E.

3.4.5 SET BUFFER ADDRESS (SIM+36)
This routine sets the sector buffer starting address for all following disk I/O operations
to the value in A (low) register and Y (high) register. This routine has no return value
requirements.

3.4.6 READ SECTOR (SIM+39)
This routine reads a single sector (128 bytes) from the current drive, track and sector
and transfers it to the buffer beginning at the current buffer address. None of these

VERSION 2.1A
24

parameters (drive, track, sector, or buffer address) are affected by this operation. If this
function is successful, then the value of the A register upon return to PEM should be set
to 0. If the function is not successful, then the value of the A register upon return to
PEM should be set to a non-zero value.

3.4.7 WRITE SECTOR (SIM+42)
This routine writes a single sector (128 bytes) to the current drive, track, and sector
from the buffer beginning at the current buffer address. None of these parameters
(drive, track, sector, or buffer address) are affected by this operation. If this function is
successful, then the value of the A register upon return to PEM should be set to 0. If the
function is not successful, then the value of the A register upon return to PEM should
be set to a non-zero value.

At entry to this function, PEM sets A equal to one of the following values:

0 if the write is to an allocated record
1 if the write is to a directory record
2 if the write is to an unallocated record

Use of these values described in APPENDIX E – DEBLOCKING.

3.4.8 TRANSLATE SECTOR (SIM+51)
This routine translates a logical record number in the A (low) and Y (high) registers into
a physical sector number in the A (low) and Y (high) registers for the currently selected
drive. For many floppy disk formats this logical sector number can be used as an index
into a translation table as shown in the following examples:

;translate - all drives identical & <=255 sectors per track
XLATE TAX A to index & ignore Y

LDA XLTTBL,X get table value
RTS return with physical

;translate - two different drives & <=255 sectors per track
XLATE TAX A to index & ignore Y

LDA NXTDRV get drive number
BNE SETS2 branch if not drive 0
LDA XLTT0,X else get value
RTS exit

SETS2 LDA XLTT1,X get value
RTS and return with it

NOTE
This function is normally only used when the physical sector is one record
(128 bytes) long. For disks having physical records > 128 bytes long this

VERSION 2.1A
25

function should return the logical record number unaltered.

3.5 READ CLOCK (SIM+48)
This entry provides a standard means to return a real-time clock value to transients.
The return time should be in 1/60ths of a second for a 24 hour clock. Thus the return
value should be between $000000 and $4F19FF (5183999) inclusive. Since the return
value requires more than two bytes, the normal DOS/65 parameter passing standards
have been extended in this case to use the X register. Thus for example a time of
$4F19FF would be returned as

A=$FF Y=$19 X=$4F

If the user does not have a real-time clock then the most significant bit of X should be
set to 1. In such a case the code at the entry point could be

LDX #128
RTS

An example of how to convert this capability to a clock time in a BASIC-E/65 subroutine
is as follows:

tea=512
sim=tea+12
x.reg=tea+17
poke x.reg,48
time=call(sim)
if peek(x.reg) > 127\

then\
print "NO CLOCK!":\
return

time=peek(x.reg)*65536+time
hours=int(time/216000)
time=time-(hours*216000)
minutes=int(time/3600)
time=time-(minutes*3600)
seconds=int(time/60)
print hours;":";minutes;":";seconds
return

Neither CCM, PEM nor any standard transient uses this entry, however future versions
may use the real time clock for such functions as calculation of assembly or compile
time and rate. In that case the clock will only be used if the X value indicates that the
clock is actually present.

VERSION 2.1A
26

3.6 CONSOLE DEFINITION BLOCK (SIM+54)
The man-machine interface provided by the console uses a block of data which defines
the characteristics of the users console output device. That block of data begins at SIM
+54 and is defined by the following assembly language (the data shown is for example
only). Each individual entry is discussed in Section 3.6.1.

* = sim+54
.byt 0 scratch byte
.byt 8 backspace
.byt 5 clear to end of line
.byt $1c forward space
.byt $f normal attributes
.byt $e invert attributes
.byt 24 lines per screen
.byt 80 char per line
.byt $c formfeed
.byt 1 home
.byt 2 clear to end of screen

NOTE
If the console actually requires a multiple character sequence to
accomplish the function described then the single character in this block
should function as a "trigger" which causes the full sequence to be
generated by the console output routine in SIM.

3.6.1 DATA DEFINITIONS
The following descriptive terms are used in many of the data descriptions and are
defined here for clarity.

Control Character
One of the ASCII characters having a hexadecimal value of from $00
through $1F. Since the CR ($0D) and LF ($0A) are already used as output
characters by DOS/65 they can not normally be used as to accomplish
any of the special functions defined below. They can be used if the
resulting action is an acceptable substitute for a function which is not
otherwise supported by the users console.

Non-Printing
This term means that the character does not result in placement of a
character on the screen and does not cause the cursor to move except as
specified.

3.6.1.1 SCRATCH (SIM+54)
This byte is used by PEM as a scratch byte. It need not be initialized to any specific

VERSION 2.1A
27

value by SIM but must not be altered by SIM or any transient.

3.6.1.2 BACKSPACE (SIM+55)
This byte should be the non-printing, control character which when sent to the console
causes the cursor to move one position to the left. If the cursor is at the left edge of the
screen when this character is sent to the console no action should be taken. Other than
the change in display attributes (e.g., blink, underline, reverse) associated with the
cursor, the character at the old and new cursor positions should not be altered as a
result of this character.

3.6.1.3 CLEAR TO END OF LINE (SIM+56)
This byte should be the non-printing, control character which when sent to the console
will cause every position after the cursor and in the same line as the cursor and the
position at the cursor to be cleared. If the console does not support such a function a
linefeed ($0A) may be substituted. In this case some line editing inputs (ctl-r and ctl-x)
will cause the console output to scroll up to display a blank line rather than clearing the
current line as the CLEAR TO END OF LINE character should.

3.6.1.4 FORWARD SPACE (SIM+57)
This byte should be the non-printing, control character which when sent to the console
causes the cursor to move one position to the right. If the cursor is at the right edge of
the screen when this character is sent to the console no action should be taken. Other
than the change in display attributes (e.g., blink, underline, reverse) associated with the
cursor, the character at the old and new cursor positions should not be altered as a
result of this character. The action of this character is the reverse of the BACKSPACE
character. If this function is not supported by the console an ASCII space ($20) may be
substituted. The only adverse effect is that input prompts (e.g., the normal CCM
prompt) will be destroyed when a ctl-r or ctl-x is used during editing.

3.6.1.5 NORMAL ATTRIBUTES (SIM+58)
This byte should be the non-printing, control character which when sent to the console
causes all following characters sent to the console to be displayed in "normal" mode.
The definition of "normal" is up to the user but would typically mean normal video, not
underlined, not blinking or similar attributes. If this function and the INVERT
ATTRIBUTES function are not supported by the console then this character should be
set to the NULL ($00) and the output routine in SIM should ignore the NULL.

3.6.1.6 INVERT ATTRIBUTES (SIM+59)
This byte should be the non-printing, control character which when sent to the console
causes all following characters sent to the console to be displayed in "inverted" mode.
The definition of "inverted" is up to the user but would typically mean inverted video,
underline, blinking or similar attributes. If this function and the NORMAL ATTRIBUTES
function are not supported by the console then this byte should be set to an ASCII "Up
Arrow" ($5E).

VERSION 2.1A
28

3.6.1.7 LINES PER SCREEN (SIM+60)
This byte should be the number of lines in one full screen of data on the console.
Typical values are 16 and 24. Hardcopy terminals should use 24 in order to preclude
excess output lengths for programs which use this parameter to determine the
allowable number of lines to output.

3.6.1.8 CHARACTERS PER LINE (SIM+61)
This byte should be the number of characters in a single line on the console output
device. Typical values are 20, 32, 40, 64, 72, 80.

3.6.1.9 FORMFEED (SIM+62)
This byte should be the non-printing, control character which when sent to the console
will cause the screen to be cleared and the cursor to be positioned at the upper left
hand (home) position.

3.6.1.10 HOME (SIM+63)
This byte should be the non-printing, control character which when sent to the console
will cause the cursor to be positioned at the upper left hand (home) position. Other than
the change in display attributes (e.g., blink, underline, reverse) associated with the
cursor, the character at the old and new cursor positions should not be altered as a
result of this character.

3.6.1.11 CLEAR TO END OF SCREEN (SIM+64)
This byte should be the non-printing, control character which when sent to the console
causes all positions after the cursor and the position at the cursor to be cleared. The
cursor location should not be altered as a result of this character.

3.6.2 USAGE
Version 2.1 of DOS/65 does not use all of the data in the console definition block. The
following table shows which elements of the block are used by each program. Many
other transients (e.g., RUN.COM) use the buffered input capabilities of PEM and thus
indirectly use the data in the console definition block.

PEM
Input

PEM
Output CCM EDIT DEBUG ASM

BACKSPACE X X X
CLEAR TO EOL X X
FORWARD SPACE X X
NORMAL ATTRIBUTES X X X
INVERT ATTRIBUTES X X X
LINES PER SCREEN X
CHAR PER LINE X X
FORMFEED X
HOME
CLEAR TO EOS

VERSION 2.1A
29

NOTE
The Normal and Invert Attributes characters are only used to echo control
characters.

3.6.3 STANDARD CHARACTERS
The CR ($0D), LF ($0A) and DELETE ($7F) are used extensively by DOS/65 and are
assumed to result in the following action when sent to the console:

CR
Places cursor at left edge of screen but does not scroll the screen or in
any other way cause the cursor to move from the original line. No
characters are altered by the CR other than the attributes associated with
the cursor itself.

LF
Moves cursor to the next line. If the cursor is already on the last line of the
screen the screen should scroll up and clear the new bottom line. The
position of the cursor in the line should not be altered as a result of the
action of this character.

DELETE
Prints some character on the screen. If the users console does not print a
character when it receives a DELETE, then the following code should be
inserted in the WRITE TO CONSOLE routine in SIM:

CMP #$7F
BNE *+4
LDA #' '

3.7 DCB CONTENTS
Version 2.1 allows a wide variety of disk formats to be used. In order to implement that
flexibility the user must define several parameters and place them in a DISK CONTROL
BLOCK (DCB) organized as follows (numbers shown are example only):

MAXBLK .WOR 242 maximum block number
NRECRD .WOR 26 number of 128 byte records/track
NSYSTR .WOR 2 number of system tracks
BLKSCD .BYT 0 allocation block size code
MAXDIR .WOR 63 maximum directory number
ALCMAP .WOR $F345 address of allocation map
CHKFLG .BYT 0 checksum flag
CHKMAP .WOR $F365 address of checksum map

VERSION 2.1A
30

Note that each drive must have a unique DCB. Each of the DCB parameters is
discussed in the following sections:

NOTE
All references to records refer to 128 byte, DOS/65 sectors or records. If a
user wishes to use hardware sectors of some other length all
blocking/deblocking is the users responsibility as described in APPENDIX
E. All data transfers to and from PEM or any other program which calls
SIM must be in the form of 128 byte records. The buffer length in DOS/65
is set at 128 therefore that buffer can only be used as the hardware sector
buffer when the hardware sector length is 128. Any larger sector size will
require use of a separate buffer in SIM and transfer of data to/from the
current DOS/65 buffer location as logical records of 128 bytes. For
example a Kaypro IV double-sided, double density 5.25 inch disk would
appear to DOS/65 Version 2.1 to consist of 40 records per track. In that
case the users SIM must handle the blocking & unblocking associated
with handling the 512 byte hardware sectors of the disk and getting the
correct 128 bytes out of the hardware sector or putting the 128 bytes back
into the right position.

CAUTION
While Version 2 allows each disk in the system to be different and
even allows the disk characteristics to be dynamically altered, once
a given disk (i.e., the magnetic media) is used with a specific DCB
parameter set it can only be used with that same DCB parameter set.

3.7.1 NUMBER OF SYSTEM TRACKS (NSYSTR)
For disks which must contain the operating system in a form which can be created and
loaded using the normal approach or which are to be used for interchange with other
users, sufficient space must be reserved on the disk for BOOT, CCM, PEM and SIM.
This space must be allocated as whole tracks. It is possible to create a data-only disk
by setting NSYSTR to zero.

As a minimum of 5504 bytes are required for BOOT, CCM, PEM and SIM, the number
of system tracks which must be allocated can be calculated as follows:

bytes.per.track=(sectors.per.track)*128

system.tracks=5504/(bytes.per.track)

EXAMPLE:
sectors.per.track=18

VERSION 2.1A
31

bytes.per.track=18*128=2304
system.tracks=5504/2304=2.4

therefore
NSYSTR=3

3.7.2 NUMBER OF RECORDS (NRECRD)
The NRECRD parameter is the number of 128 byte, DOS/65 records in a track. No
calculation is usually needed to determine this number except in cases where the
hardware sector size is larger than 128 bytes. In that case

NRECRD=(number.of.hardware.sectors)*(hardware.sector.size)/128

3.7.3 ALLOCATION BLOCK SIZE CODE (BLKSCD)
Disk space is allocated in blocks as a function of the block size code (BLKSCD). The
value of BLKSCD for each of the allowable allocation block sizes is shown in the
following table:

BLOCK SIZE (K=1024) BLKSCD
1K 0
2K 1
4K 2
8K 3

16K 4

3.7.4 MAXIMUM BLOCK NUMBER (MAXBLK)
The disk allocation blocks on a disk are numbered from zero through the value of the
parameter MAXBLK. This parameter is calculated as follows:

data.bytes=(total.tracks-system.tracks)*(sectors.per.track)*128

maximum.block.number=integer.part.of(data.bytes/block.size)-1

EXAMPLE:

total.tracks=40
system.tracks=2
sectors.per.track=26
data.bytes=(40-2)*(26)*128=126464
block.size=1024
number.of.blocks=int(126464/1024)=123

therefore

VERSION 2.1A
32

MAXBLK=122

NOTE
If the maximum block number is greater than 65535 with the selected
block.size then the block size must be increased and MAXBLK
recalculated or MAXBLK must be set to 65535. In the later case some
disk capacity will be wasted. If the maximum block number is greater than
65535 with a block size of 16K then MAXBLK must be set to 65535.
Some disk capacity will be wasted in that case.

3.7.5 MAXIMUM DIRECTORY NUMBER (MAXDIR)
The first few records of the data area on a disk are used for the directory. MAXDIR
defines the maximum directory number for the disk and is one less than the number of
directory entries allowed for the drive. Note that since 4 directory entries are stored in
each DOS/65 record the number of records devoted to the directory can be calculated
as follows:

number.directory.records=integer.part.of(MAXDIR/4)+1

While all SIF formats use 64 directory entries and hence use a MAXDIR of 63, the user
can use other values for internal use as desired. Disks having a large capacity will be
most likely to require additional directory space.

3.7.6 ADDRESS OF ALLOCATION MAP (ALCMAP)
SIM must contain a space devoted to the disk allocation map for each drive. Each drive
must have its own unique space. ALCMAP is the address of the first byte of that space.
The length of that space is calculated as follows:

alloc.map.length=integer.part.of(MAXBLK/8)+1

EXAMPLE:
MAXBLK=345
alloc.map.length=(345/8)+1=43+1=44

In this example the space in SIM would be reserved with a line in the SIM
assembly source that looked like:

AMAP0 *= *+44

The entry in the DCB for ALCMAP would be:

VERSION 2.1A
33

.wor AMAP0

3.7.7 CHECK FLAG (CHKFLG)
As discussed in section 2.4.1, DOS/65 maintains a set of checksums for each directory
record on each disk. Whenever a write operation is performed on that disk, the
checksums stored by PEM are compared to the checksums on the disk for which the
write is being attempted. If those checksums do not match, the disk is marked as READ
ONLY (R/O) and the write is aborted. While this is a good check for removable disks, it
is not necessary for non-removable disks and would slow down I/O operations. If
CHKFLG is zero, then checksums will be tested. If the user desires to eliminate testing
of checksums then CHKFLG should be set to 128 ($80).

3.7.8 ADDRESS OF CHECKSUM MAP (CHKMAP)
As discussed in section 2.4.1 and 3.7.7, DOS/65 maintains a set of checksums for each
directory record on each disk. As was the case for the allocation map, the set of
checksums are actually located in SIM but are maintained by PEM. A unique space
must be allocated for each drive. The length of that space is calculated as follows:

check.map.length=integer.part.of(MAXDIR)/4+1

EXAMPLE:
MAXDIR=63
check.map.length=(63/4)+1=15+1=16

In this example the space in SIM would be reserved with a line in the SIM
assembly source that looked like:

CMAP0 *= *+16

The entry in the DCB for CHKMAP would be:

.wor CMAP0

VERSION 2.1A
34

APPENDIX A - SYSTEM MODULE LOCATION ON DISK

MODULE LENGTH
BYTES

SECTORS FIRST
TRACK/SECTOR

LAST
TRACK/SECTOR

SIF A & D
BOOT 128 1 0/1 0/1

CCM 2048 16 0/2 0/17
PEM 3072 24 0/18 1/15
SIM 256 & up 2 & up 1/16

SIF B & C
BOOT 128 1 0/1 0/1

CCM 2048 16 0/2 0/17
PEM 3072 24 0/18 2/5
SIM 256 & up 2 & up 2/6

SIF E
BOOT 128 1 0/1 0/1

CCM 2048 16 0/2 1/1
PEM 3072 24 1/2 2/9
SIM 256 & up 2 & up 2/10

SIF F & G
BOOT 128 1 0/1 0/1

CCM 2048 16 0/2 0/17
PEM 3072 24 0/18 1/11
SIM 256 & up 2 & up 1/12

VERSION 2.1A
35

APPENDIX B - DOS/65 MEMORY USAGE

B.1 DOS/65 PECULIAR LOCATIONS
As illustrated in Figure B-1, some DOS/65 locations vary as a function of the version
while others are fixed. Both of these categories will be discussed separately.

B.1.1 FIXED LOCATIONS
All versions of DOS/65 use the lower part of page 1 as shown in Figure B-2 for certain
critical items. Specifically in all versions the assembly code which describes page one
is:

* = $100
WBOOT JMP SIM+3 Warm Boot
PEMJMP JMP PEM Jump to PEM
IOBYTE .BYT 0 I/O status byte (unused)
DFLFCB *= *+33 Default fcb
DFLBUF *= *+128 Default buffer

$100-102 Jump to DOS/65 Warm Boot
A warm boot reads back into memory CCM and PEM (but not SIM)
and then runs CCM.

$103-105 Jump to PEM

$107-$127 Default FCB
This is set up by CCM when a transient is executed.

$128-$1A7 Default Disk Buffer

Since the default disk buffer and fcb can be moved almost anywhere, no real stack
space is lost. Moreover, the jump addresses for PEM and Warm Boot could both be
captured by the transient and thus free all of Page one for unrestricted use by the
transient. While the fcb and buffer can be moved almost anywhere, the use of the 128
byte default buffer (one record or sector) is straightforward. A read will fill in the buffer
with data from the disk while a write will transfer the data in the buffer to the disk. At
least two schemes are useable in reading or writing large amounts of data - either move
the data to the buffer or move the buffer to the data. Moving the data to the buffer is the
safest approach but is also probably the slowest. Moving the buffer to (really through)
the data as successive records are written has one danger. During a write operation

VERSION 2.1A
36

which requires opening of a new extent, the contents of the buffer are destroyed. Thus,
a user program which used that approach would find part of the data in memory to be in
error after the write. If more than 16K bytes must be written, than do not use the moving
buffer approach.

B.1.2 VARIABLE LOCATIONS
The only location which varies as a function of the version is the TEA start address.

SIM – variable length
PEM – 3072 bytes
CCM – 2048 bytes

TEA – variable length

PAGE 1
PAGE 0

NOTES
1. TEA start address is a function only of version (e.g., S=$200, K=$2000) but is always
on a page boundary. TEA length is a function of version, MEMORY SIZE, and SIM
length. Transients are loaded at start of TEA and entered at start of TEA for execution.
2. CCM, PEM and SIM start addresses are a function of MEMORY SIZE and SIM
length but are always on a page boundary.
3. Lower half of Page 0 ($00 - $7F) is used by BOOT for some versions. BOOT is not
permanently RAM resident thus page zero is free after BOOT completes execution.
4. First sixteen bytes in Page 0 have some restrictions. See text for details.
5. SIM is at least one page (256 bytes) long. It usually occupies the highest memory not
used for essential I/O or ROM-based software.
6. See Figure B-2 for details of Page 1 memory usage.

Figure B-1 DOS/65 Memory Map

$1A8 to $1FF Stack
$128 to 1A7 Default Buffer
$107 to $127 Default FCB

$106 IO Status Byte
$103 to $105 JMP PEM

$100 to $102 JMP SIM+3

Figure B-2 Page One Memory Map

B.2 RESTRICTED LOCATIONS
Because of the way in which PEM saves, uses, and restores page zero; the first 16

VERSION 2.1A
37

bytes in page zero ($00 through $0F) cannot be used as part of fcbs, disk buffers,
console input buffers or output strings. This does not mean that those locations are
modified by DOS/65 - they are not modified nor is any other part of page zero. They
can be used for any purpose other than those mentioned above with absolutely no
problems. One additional consequence of the save-use-restore approach used by PEM
is that a 6502 Reset may result in a scrambled page zero. So if the system hangs up, a
6502 Reset will normally require a DOS/65 cold start to be executed.

Upon entry to SIM from PEM it is possible that the first sixteen bytes of page zero will
contain critical PEM parameters rather than the data stored there by a transient.
Transients should not use those locations for storage of data to be used by SIM unless
the data is passed to SIM through PEM or prior to calling PEM.

While DOS/65 itself (i.e., CCM, PEM, or SIM) does not require any part of page zero to
be dedicated to its use, most of the transients supplied with DOS/65 do use some of
page zero. In the current version, no program uses more than the region from $02
through $BF. Allowing for future growth it is suggested that the user follow these
guidelines for use of page zero by SIM or the routines called by SIM:

1. Use page zero beginning at the top (i.e., $FF)

2. Use an absolute minimum number of page zero locations (preferably 32 or
less)

VERSION 2.1A
38

APPENDIX C - FLAGS AND INTERRUPTS

C.1 CPU FLAGS
Calls to PEM will always result in the decimal flag (D) being cleared since the first thing
that happens in PEM is a CLD instruction. The interrupt flag is not altered by CCM or
PEM. If the interrupt option for SIM is used, then SIM will disable interrupts during disk
I/O operations but will always exit with interrupts enabled (I = 0). The use of interrupts
by the system or applications S/W is discussed more fully below. The state of the
overflow (V) flag is indeterminate upon return from PEM as is the state of the carry flag
(C). The zero and negative flags (Z and N) are set or cleared as a function of the return
value in A.

C.2 INTERRUPTS
While DOS/65 (and PEM in particular) is not designed to use interrupts it can be used
in an interrupt environment. The major limitation is how page zero is used by PEM and
SIM (CCM uses no page zero memory!). Since SIM and PEM do some swapping of
user and DOS/65 data in and out of page zero, the state of page zero (i.e., is the user
data there or is it DOS/65 data) upon execution of a random interrupt is not easily
determined. If the interrupt routine does not use or alter the affected parts of page zero
and if the CPU state is fully restored upon return to DOS/65 (as it should be anyway),
there would be no problem.

CAUTION
Do not attempt to use PEM as a reentrant routine in an interrupt
environment. It is not designed to be reentrant and will not work
properly.

VERSION 2.1A
39

APPENDIX D - STANDARD INTERCHANGE FORMATS

The following Standard Interchange Formats (SIF) are available for DOS/65
Version 2.1. Some of these require special action and are only available by special
order. Those are designated by the yellow highlighting in the table. Other formats, e.g.,
C64 CP/M 1541, are under development.

Code Media Tracks MAXBLK NSYSTR NRECRD Format
Notes

Translation
Table

STD-8
(SIF-A) 8 “ 77 242 2 26 1,2,3,7 1

SIF-B 5.25 “ 35 71 3 18 1,2,4,7 2
SIF-C 5.25 “ 80 172 3 18 1,2,7 2
OSI-8
(SIF-D) 8 “ 77 239 3 26 5,7 1

OSI-5
(SIF-E) 5.25 “ 40 71 4 16 5,6 None

SIF-F 5.25 “ 40 141 2 30 2,8,7 2
SIF-G 5.25 “ 80 145 2 30 2,8,9 2
K-IV 5.25 “ 40 196 1 40 10 None

FORMAT NOTES

1. Diskettes must be single sided, single density, soft sectored diskettes with
hardware sectors of 128 bytes.

2. Diskettes should be formatted for compatibility with the Western Digital series
of LSI controller circuits.

3. "Out-of-the-box" IBM compatible single density eight inch diskettes will also be
satisfactory if they meet all other requirements.

4. It is recommended that all diskettes be certified and formatted for 40 tracks so
that users having a 40 track capable drive can use the full diskette surface by
changing MAXBLK to 82.

5. Diskettes shall be formatted for compatibility with the standard OSI disk
controller hardware using the standards defined in the OSI NOTES.

6. Physical sector number shall be one more than the logical sector number.

7. Diskettes shall use BLKSCD=0 (1K) and MAXDIR=63 (64 directory entries).

VERSION 2.1A
40

8. Diskettes must be single sided, double density, soft sectored diskettes with
hardware sectors of 128 bytes.

9. Diskettes shall use BLKSCD=1 (2K) and MAXDIR=63 (64 directory entries).

10. Kaypro IV formatted diskettes (i.e., double-sided, double-density, 40 track,
5.25 inch diskettes) can be used and freely interchanged with Kaypro IV or
compatible CP/M machines with one possible exception. That exception is the
result of the slightly different way in which DOS/65 defines directory space
allocation. CP/M provides separate means of specifying the number of directory
entries and the number of blocks allocated to those entries. For the Kaypro IV
format this feature was used to specify 64 directory entries but to allocate two
2048 byte blocks for the directory rather than the single 2048 byte block actually
needed to store the directory. DOS/65 does not provide separate ways to define
the number of directory entries and the number of blocks allocated to the
directory. For the Kaypro IV format DOS/65 would only allocate one block to the
directory. That would mean that data would start at the wrong block. As a result,
DOS/65 says that a Kaypro IV diskette can store 128 directory entries so that
two blocks will be allocated. This makes the diskettes fully compatible unless the
DOS/65 user writes more than 64 entries in the directory. While that is possible it
is unlikely. However, as a consequence of this anomaly the user should always
ensure that no more than 64 directory entries are used if diskettes are actually to
be exchanged with Kaypro IV compatible CP/M systems.

SECTOR TRANSLATION TABLE 1

LOGICAL PHYSICAL
0 1
1 7
2 13
3 19
4 25
5 5
6 11
7 17
8 23
9 3
10 9
11 15
12 21
13 2
14 8
15 14
16 20
17 26

VERSION 2.1A
41

18 6
19 12
20 18
21 24
22 4
23 10
24 16
25 22

SECTOR TRANSLATION TABLE 2

LOGICAL PHYSICAL LOGICAL PHYSICAL
0 1 18 20
1 3 19 22
2 5 20 24
3 7 21 26
4 9 22 28
5 11 23 30
6 13 24 19
7 15 25 21
8 17 26 23
9 2 27 25
10 4 28 27
11 6 29 29
12 8
13 10
14 12
15 14
16 16
17 18

VERSION 2.1A
42

APPENDIX E - DEBLOCKING

E.1 GENERAL
DOS/65 Version 2.1 includes the logic needed to optimize read and write performance
with disks having physical sector sizes larger than the 128 byte DOS/65 record. This is
achieved by passing parameters to SIM as well as by the addition of code to SIM.

E.2 PERFORMANCE
This algorithm provides the following performance improvements

BASELINE (8" SSSD) = 42 sec.
8" SSDD (512 bytes/sector) = 27 sec.

when executing a typical assembly. It is interesting to note that the improvement noted
for DOS/65 was comparable to that noted for similar de-blocking under CP/M.

E.3 SAMPLE CODE

;deblock
;sector deblocking algorithms for dos/65 2.1
;released: 24 november 1985
;last revision:
; 15 march 2008
; converted to TASM 3.x format
;dos/65 to host disk constants
;these parameters will need to be set to the values
;appropriate for the system in question.
;data shown is for example only.
blksiz = 2048 ;dos/65 allocation size
hstsiz = 256 ;host disk sector size
hstspt = 32 ;host disk sectors/trk
hstblk = hstsiz/128 ;dos/65 sects/host sector
d65spt = hstblk*hstspt ;dos/65 sectors/track
secmsk = hstblk-1 ;sector mask
secshf = hstblk/2 ;shift to get host sector
;pem constants on entry to write
wrall = 0 ;write to allocated
wrdir = 1 ;write to directory
wrual = 2 ;write to unallocated
;page zero definitions
;the starting address should be set to an
;appropriate location in upper part of
;page zero.
pzstrt = $e0 ;first free page zero
;note that four page zero bytes are needed.

*= pzstrt
VERSION 2.1A

43

dmaadr *= *+2 ;dos/65 buffer location
mvepnt *= *+2 ;host buffer loaction
;code after here is shown at $f000 as an example only
;it is normally in the sim location as defined
;by the sim addressing.

*= $f000
;The sim entry points given below show the
;code which is relevant to deblocking only.
boot

;insert normal boot code here
wboot

;insert normal warm boot code here
;initialize key variables
;this code would normally be in the setup section.

lda #0 ;clear a
sta hstact ;host buffer inactive
sta unacnt ;clear unalloc count
;normal code to get ready to go to ccm goes here

;home the selected disk
home lda hstwrt ;check for pending write

bne homed ;there is so skip ahead
sta hstact ;clear host active flag

homed ;normal code for home starts here
rts

;select disk
seldsk sta sekdsk ;seek disk number

;insert normal dcb address capture
rts

;set track given by registers ay
settrk sta sektrk ;save seek track

sty sektrk+1
rts

;set sector given by registers ay
setsec sta seksec ;save seek sector

sty seksec+1
rts

;set dma address given by ay
setdma sta dmaadr ;save address

sty dmaadr+1
rts

;translate sector number
sectrn rts ;do nothing
;the read entry point takes the place of
;the previous sim definition for read.
;read the selected dos/65 sector
read ldx #0 ;x <-- 0

stx unacnt ;clear unallocated count
inx ;x <-- 1
stx readop ;say is read operation
stx rsflag ;must read data
inx ;x <-- wrual
stx wrtype ;treat as unalloc
jmp rwoper ;to perform the read

;The write entry point takes the place of
;the previous sim defintion for write.
;write the selected dos/65 sector
write sta wrtype ;save param from pem

ldx #0 ;say is

VERSION 2.1A
44

stx readop ;not a read operation
cmp #wrual ;write unallocated?
bne chkuna ;check for unalloc

;write to unallocated, set parameters
lda #blksiz/128 ;next unalloc recs
sta unacnt
lda sekdsk ;disk to seek
sta unadsk ;unadsk <-- sekdsk
lda sektrk
ldy sektrk+1
sta unatrk ;unatrk <-- sectrk
sty unatrk+1
lda seksec
ldy seksec+1
sta unasec ;unasec <-- seksec
sty unasec+1

;check for write to unallocated sector
chkuna lda unacnt ;any unalloc remain?

beq alloc ;skip if not
;more unallocated records remain

dec unacnt ;unacnt <-- unacnt-1
lda sekdsk
cmp unadsk ;sekdsk = unadsk?
bne alloc ;skip if not

;disks are the same
lda unatrk ;sektrk = unatrk?
cmp sektrk
bne alloc ;no so skip
lda unatrk+1
cmp sektrk+1
bne alloc ;skip if not

;tracks are the same
lda unasec ;seksec = unasec?
cmp seksec
bne alloc ;no so skip
lda unasec+1
cmp seksec+1
bne alloc ;skip if not

;match, move to next sector for future ref
inc unasec ;unasec = unasec+1
bne nounsc
inc unasec+1

nounsc lda unasec ;end of track?
cmp #<d65spt ;count dos/65 sectors
lda unasec+1
sbc #>d65spt
bcc noovf ;skip if no overflow

;overflow to next track
lda #0 ;unasec <-- 0
sta unasec
sta unasec+1
inc unatrk ;unatrk <-- unatrk+1
bne noovf
inc unatrk+1

;match found, mark as unnecessary read
noovf lda #0 ;0 to accumulator

sta rsflag ;rsflag <-- 0
beq rwoper ;to perform the write

VERSION 2.1A
45

;not an unallocated record, requires pre-read
alloc ldx #0 ;x <-- 0

stx unacnt ;unacnt <-- 0
inx ;x <-- 1
stx rsflag ;rsflag <-- 1

;common code for read and write follows
;enter here to perform the read/write
rwoper lda #0 ;zero to accum

sta erflag ;no errors (yet)
lda seksec ;compute host sector
ldy seksec+1
sta sekhst
sty sekhst+1
ldx #secshf ;get shift count

shflpe lsr sekhst+1 ;do high
ror sekhst ;then low
dex
bne shflpe ;loop if more

;active host sector?
lda hstact ;host active flag
pha ;save
inx ;x <-- 1
stx hstact
pla ;get flag back
beq filhst ;fill host if not active

;host buffer active, same as seek buffer?
lda sekdsk
cmp hstdsk ;same disk?
bne nmatch

;same disk, same track?
lda hsttrk ;sektrk = hsttrk?
cmp sektrk
bne nmatch ;no
lda hsttrk+1
cmp sektrk+1
bne nmatch

;same disk, same track, same sector?
lda sekhst ;sekhst = hstsec?
cmp hstsec
bne nmatch ;no
lda sekhst+1
cmp hstsec+1
beq match ;skip if match

;proper disk, but not correct sector
nmatch lda hstwrt ;host written?

beq filhst ;skip is was
jsr writeh ;else clear host buff

;may have to fill the host buffer
;so set host parameters
filhst lda sekdsk

sta hstdsk
lda sektrk
ldy sektrk+1
sta hsttrk
sty hsttrk+1
lda sekhst
ldy sekhst+1
sta hstsec

VERSION 2.1A
46

sty hstsec+1
lda rsflag ;need to read?
beq noread ;no
jsr readh ;yes, if 1

noread lda #0 ;0 to accum
sta hstwrt ;no pending write

;copy data to or from buffer
match lda #0 ;clear move pointer

sta mvepnt
sta mvepnt+1
lda seksec ;mask sector number
and #secmsk ;least signif bits
tax ;make a counter
beq nooff ;done if zero

clcpnt clc
lda mvepnt
adc #128
sta mvepnt
lda mvepnt+1
adc #0
sta mvepnt+1
dex
bne clcpnt ;loop if more

;mvepnt has relative host buffer address
nooff clc ;add hstbuf

lda #<hstbuf
adc mvepnt
sta mvepnt
lda #>hstbuf
adc mvepnt+1
sta mvepnt+1

;at this point mvepnt contains the address of the
;sector of interest in the hstbuf buffer.

ldy #127 ;length of move - 1
ldx readop ;which way?
bne rmove ;skip if read

;write operation so move from dmaadr to mvepnt
inx ;x <-- 1
stx hstwrt ;hstwrt <-- 1

wmove lda (dmaadr),y
sta (mvepnt),y
dey
bpl wmove ;loop if more
bmi endmve ;else done

;read operation so move from mvepnt to dmaadr
rmove lda (mvepnt),y

sta (dmaadr),y
dey
bpl rmove ;loop if more

;data has been moved to/from host buffer
endmve lda wrtype ;write type

cmp #wrdir ;to directory?
bne nodir ;done if not

;clear host buffer for directory write
lda erflag ;get error flag
bne nodir ;done if errors
sta hstwrt ;say buffer written
jsr writeh

VERSION 2.1A
47

nodir lda erflag
rts

;writeh performs the physical write to
;the host disk, readh reads the physical disk.
writeh

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error
rts

;
readh

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
rts

;uninitialized ram data areas
sekdsk ;seek disk number

*= *+1
sektrk ;seek track number

*= *+2
seksec ;seek sector number

*= *+2
hstdsk ;host disk number

*= *+1
hsttrk ;host track number

*= *+2
hstsec ;host sector number

*= *+2
sekhst ;seek shr secshf

*= *+2
hstact ;host active flag

*= *+1
hstwrt ;host written flag

*= *+1
unacnt ;unalloc rec cnt

*= *+1
unadsk ;last unalloc disk

*= *+1
unatrk ;last unalloc track

*= *+2
unasec ;last unalloc sector

*= *+2
erflag ;error reporting

*= *+1
rsflag ;read sector flag

*= *+1
readop ;1 if read operation

*= *+1
wrtype ;write operation type

*= *+1
hstbuf ;host buffer

*= *+hstsiz

VERSION 2.1A
48

	SECTION 1 - INTRODUCTION
	SECTION 2 - PRIMITIVE EXECUTION MODULE (PEM)
	2.1 GENERAL CONCEPT
	2.2 CHARACTER ORIENTED I/O COMMANDS
	2.2.1 X = 1 (READ CONSOLE INPUT WITH ECHO)
	2.2.2 X = 2 (CONSOLE OUTPUT)
	2.2.3 X = 3 (READ FROM READER)
	2.2.4 X = 4 (WRITE TO PUNCH)
	2.2.5 X = 5 (WRITE TO LIST DEVICE)
	2.2.6 X = 6 (READ CONSOLE INPUT WITHOUT ECHO)
	2.2.7 X = 9 (PRINT BUFFER)
	2.2.8 X = 10 (READ BUFFER)
	2.2.9 X = 11 (CONSOLE READY)
	2.2.10 X = 12 (READ LIST STATUS)
	2.2.11 X = 30 (SET LIST ECHO STATUS)
	2.2.12 X = 31 (READ LIST ECHO STATUS)

	2.3 SYSTEM CONTROL COMMANDS
	2.3.1 X = 0 (WARM BOOT)
	2.3.2 X = 7 (READ I/O STATUS)
	2.3.3 X = 8 (SET I/O STATUS)
	2.3.4 X = 32 (READ CLOCK)
	2.3.5 X = 33 (READ HIGH CLOCK)

	2.4 DISK I/O COMMANDS
	2.4.1 X = 13 (INITIALIZE SYSTEM)
	2.4.2 X = 14 (SELECT DRIVE)
	2.4.3 X = 15 (OPEN FILE)
	2.4.4 X = 16 (CLOSE FILE)
	2.4.5 X = 17 (SEARCH FIRST)
	2.4.6 X = 18 (SEARCH NEXT)
	2.4.7 X = 19 (DELETE FILE)
	2.4.8 X = 20 (READ RECORD)
	2.4.9 X = 21 (WRITE RECORD)
	2.4.10 X = 22 (CREATE FILE)
	2.4.11 X = 23 (RENAME FILE)
	2.4.12 X = 24 (READ LOG‑IN STATUS)
	2.4.13 X = 25 (READ CURRENT DRIVE)
	2.4.14 X = 26 (SET BUFFER ADDRESS)
	2.4.15 X = 27 (READ ALLOCATION VECTOR)
	2.4.16 X = 28 (SET READ/WRITE STATUS)
	2.4.17 X = 29 (READ READ/WRITE STATUS)
	2.4.18 X = 34 (READ DCB ADDRESS)
	2.4.19 X = 35 (TRANSLATE SECTOR)

	SECTION 3 – SYSTEM INTERFACE MODULE (SIM)
	3.1 GENERAL CONCEPT
	3.2 SYSTEM INITIALIZATION FUNCTIONS
	3.2.1 EXECUTE COLD BOOT INITIALIZATION (SIM)
	3.2.2 EXECUTE WARM BOOT (SIM+3)

	3.3 CHARACTER I/O FUNCTIONS
	3.3.1 READ CONSOLE STATUS (SIM+6)
	3.3.2 READ FROM CONSOLE (SIM+9)
	3.3.2 WRITE TO CONSOLE (SIM+12)
	3.3.4 WRITE TO LIST (SIM+15)
	3.3.5 WRITE TO PUNCH (SIM+18)
	3.3.6 READ FROM READER (SIM+21)
	3.3.7 READ LIST STATUS (SIM+45)

	3.4 DISK I/O AND CONTROL FUNCTIONS
	3.4.1 HOME SELECTED DRIVE (SIM+24)
	3.4.2 SELECT DRIVE (SIM+27)
	3.4.3 SET TRACK (SIM+30)
	3.4.4 SET SECTOR (SIM+33)
	3.4.5 SET BUFFER ADDRESS (SIM+36)
	3.4.6 READ SECTOR (SIM+39)
	3.4.7 WRITE SECTOR (SIM+42)
	3.4.8 TRANSLATE SECTOR (SIM+51)

	3.5 READ CLOCK (SIM+48)
	3.6 CONSOLE DEFINITION BLOCK (SIM+54)
	3.6.1 DATA DEFINITIONS
	3.6.2 USAGE
	3.6.3 STANDARD CHARACTERS

	3.7 DCB CONTENTS
	3.7.1 NUMBER OF SYSTEM TRACKS (NSYSTR)
	3.7.2 NUMBER OF RECORDS (NRECRD)
	3.7.3 ALLOCATION BLOCK SIZE CODE (BLKSCD)
	3.7.4 MAXIMUM BLOCK NUMBER (MAXBLK)
	3.7.5 MAXIMUM DIRECTORY NUMBER (MAXDIR)
	3.7.6 ADDRESS OF ALLOCATION MAP (ALCMAP)
	3.7.7 CHECK FLAG (CHKFLG)
	3.7.8 ADDRESS OF CHECKSUM MAP (CHKMAP)

	APPENDIX A - SYSTEM MODULE LOCATION ON DISK
	APPENDIX B - DOS/65 MEMORY USAGE
	B.1 DOS/65 PECULIAR LOCATIONS
	B.1.1 FIXED LOCATIONS
	B.1.2 VARIABLE LOCATIONS

	B.2 RESTRICTED LOCATIONS

	APPENDIX C - FLAGS AND INTERRUPTS
	C.1 CPU FLAGS
	C.2 INTERRUPTS

	APPENDIX D - STANDARD INTERCHANGE FORMATS
	APPENDIX E - DEBLOCKING
	E.1 GENERAL
	E.2 PERFORMANCE
	E.3 SAMPLE CODE

