
DEBUG - DOS/65 DEBUGGER

VERSION 2.1

 (Copyright) Richard A. Leary
180 Ridge Road

Cimarron, CO 81220

This documentation and the associated software is not public domain, freeware, or
shareware. It is still commercial documentation and software.

Permission is granted by Richard A. Leary to distribute this documentation and software
free to individuals for personal, non-commercial use.

This means that you may not sell it. Unless you have obtained permission from Richard
A. Leary, you may not re-distribute it. Please do not abuse this.

CP/M is a trademark of Caldera

VERSION 2.1
1

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION...4
1.1 OVERVIEW AND CONCEPT...4
1.2 KEY FACTS..4

SECTION 2 - EXECUTION..5

SECTION 3 - COMMANDS...6
3.1 OVERVIEW..6
3.2 PROGRAM VARIABLES..6
3.3 BACKGROUND..8
3.4 COMMAND DESCRIPTIONS...9

3.4.1 GROUP 1 (FILE MANIPULATION COMMANDS)..9
3.4.1.1 I (INPUT)...9
3.4.1.2 R (READ)..10

3.4.1.2.1 R WITH NO PARAMETERS..10
3.4.1.2.2 R WITH ONE PARAMETER..10

3.4.2 GROUP 2 (MEMORY EXAMINATION COMMANDS).....................................11
3.4.2.1 D (DISPLAY)..11

3.4.2.1.1 D WITH NO PARAMETERS..11
3.4.2.1.2 D WITH ONE PARAMETER..11
3.4.2.1.3 D WITH TWO PARAMETERS...11

3.4.2.2 L (LIST)...12
3.4.2.2.1 L WITH NO PARAMETERS...12
3.4.2.2.2 L WITH ONE PARAMETER...12
3.4.2.2.3 L WITH TWO PARAMETERS...12

3.4.3 GROUP 3 (MEMORY MODIFICATION COMMANDS)....................................12
3.4.3.1 S (SUBSTITUTE)...12

3.4.3.1.1 S WITH NO PARAMETERS..13
3.4.3.1.2 S WITH ONE PARAMETER..13
3.4.3.1.3 S WITH TWO PARAMETERS...13

3.4.3.2 F (FILL)...14
3.4.4 GROUP 4 (CPU STATE COMMANDS)...14

3.4.4.1 X WITH NO PARAMETERS..14
3.4.4.2 X WITH ONE PARAMETER..15

3.4.5 GROUP 5 (EXECUTION COMMAND)...15
3.4.5.1 G WITH NO PARAMETERS..16
3.4.5.2 G WITH ONE PARAMETER..16
3.4.5.3 G WITH TWO PARAMETERS...16
3.4.5.4 G WITH THREE PARAMETERS...16

APPENDIX A - BREAKPOINTS..17
A.1 GENERAL..17

VERSION 2.1
2

A.2 OPERATION..17
A.3 USER BRK OR INTERRUPT...17

APPENDIX B - DEBUG MEMORY USAGE...20
B.1 OVERLAY CONCEPT..20
B.2 PAGE ZERO USAGE...20
B.3 PAGE ONE USAGE...20

APPENDIX C - INTERRUPTS UNDER DEBUG...23

APPENDIX D - DEBUG DATA LOADING...24

VERSION 2.1
3

SECTION 1 - INTRODUCTION

1.1 OVERVIEW AND CONCEPT
The DOS/65 Assembly Language Program Debugger, file DEBUG.COM on the
distribution diskette, provides the means to load, examine, modify and test programs
running under DOS/65. Most of its features can be fully used regardless of the
peculiarities of the host system. It is, however, at its best when used in a system which
allows modification and use of the 6502 IRQ/BRK vector or a JMP pointed to by that
vector. In that case, up to two breakpoints can be used for program debugging. The
software is designed to automatically detect whether breakpoints can be used and then
reconfigure the software accordingly. Additional detail about the use of breakpoints is
contained in Appendix A and a complete description of the available commands is
contained in Section 3.

1.2 KEY FACTS
The Version 2.1 DEBUG:

● Includes the ability to view memory as hexadecimal or ASCII data and as machine
language.

● Allows DOS/65 files to be loaded, with or without an offset, into the TEA.
● Includes the ability to modify memory.
● Allows execution of programs to be accomplished with zero, one or two

breakpoints.
● Will accommodate most common IRQ/BRK and destination JMP ($4C or $6C)

combinations.

VERSION 2.1
4

SECTION 2 - EXECUTION

Program execution is initiated using CCM command line of the general form.

(drive:)debug (drive:)(file name.type)

The first optional drive field designates from which drive the program DEBUG.COM will be
loaded if the default is not to be used. The drive and file name fields following the "debug"
are optional. If used they will cause the designated program to be loaded, without offset,
into the TEA in preparation for debugging as discussed in Section 3. DEBUG commands
are available to accomplish the same effect and in fact those commands allow more
flexibility in loading through use of an address offset.

The following are examples of CCM command lines for DEBUG and the resulting action
(user inputs are underlined):

COMMAND ACTION

A>debug test.kim Loads DEBUG.COM from the default drive (A) which
in turn loads TEST.KIM into the TEA. TEST.KIM is
assumed to be an object code file consisting of
"KIM" format records.

A>b:debug b:test.lib Loads DEBUG.COM from drive B. DEBUG.COM
loads the file TEST.LIB from drive B. TEST.LIB is
assumed to be an object code file consisting of
"KIM" format records.

A>b:debug test.com Loads DEBUG.COM from drive B. DEBUG.COM
loads the file TEST.COM from the default drive (A).
TEST.COM is assumed to be an executable code
file beginning at the start of TEA.

A>debug Loads DEBUG.COM from the default drive (A).

VERSION 2.1
5

SECTION 3 - COMMANDS

3.1 OVERVIEW
The commands available within DEBUG.COM are shown in summary form in Figure 3-1.
Those combinations having no entry are not defined and if executed will cause an error
message to be generated. Commands are entered by typing the single underlined letter
followed by up to three hexadecimal parameters separated by commas. Two commands,
Input and Examine, have special command formats. Those formats are discussed in detail
in conjunction with the associated command.

3.2 PROGRAM VARIABLES
Understanding of how to use DEBUG.COM depends in part upon knowing what the
principal parameters are that DEBUG.COM maintains.

The most important variables maintained by DEBUG.COM are those which describe the
host 6502 CPU register and flag state. Upon initial entry to DEBUG.COM those
parameters will be set to the following values:

VARIABLE VALUE
* TEA
A 0
X 0
Y 0
S $FF
N 0
V 0
? 0
B 0
D 0
I 1
Z 0
C 0

As indicated, the program counter (*) is set to the value of TEA for which the version of
DEBUG.COM being used was assembled. Each register or flag can, however, be altered
(see X command) and if breakpoints are used, the registers and flags will reflect the CPU
state at the breakpoint location. Conversely, execution of the G command will cause the
actual CPU state to be set to the values contained in the variables prior to "jumping" to the
address designated by the program counter (*).

VERSION 2.1
6

The second variable of interest to the user is a pointer into the system memory. It is this
pointer which is used during the D (Display), L (List), F (Fill), and S (Substitute) command
to view or modify memory. It is not the same as the program counter (*) and thus the D, L,
F, and S commands do not alter the program counter and conversely the G (Go) and X
(State) commands do not alter the memory pointer.

NUMBER PARAMETERS

NONE 1 2 2

Display Display bytes @
current pointer

Set pointer to (1)
and display bytes

Display bytes from
(1) through (2)

Fill Fill (1) through (2)
with (3)

Go Execute @ current
PC

Set PC to (1) and
execute

Set PC to (1), set
breakpoint @ (2),
and execute

Set PC to (1), set
breakpoints @ (2)
and (3), and
execute

Input UFN
(filename.type)

List Disassemble
instructions @
current pointer

Set pointer to (1)
and disassemble
instructions

Disassemble
instructions from
(1) through (2)

Read Read file Read file with
offset = (1)

Substitute Enter bytes
beginning at
current pointer

Set pointer to (1)
and enter bytes

Set (1) to low byte
of (2) and (1) + 1 to
high byte of (2)

eXamine Display CPU state Set designated
register or flag to
(1) and display
CPU state

Bold boxes indicate that command format is peculiar to that instruction. Refer
to the command in question for details.

Figure 3-1 COMMAND SUMMARY

3.3 BACKGROUND
The key features of DEBUG.COM are summarized below.

Prompt
The debugger prompts all command inputs with the character "-".

Parameters
VERSION 2.1

7

For those commands which use parameters, they are entered in
hexadecimal without any prefix or suffix. If multiple parameters are used
each parameter is separated from the preceding parameter by a comma.
Thus an entry such as

D200,2ef

will execute the D (Display) command with two parameters. The first
parameter will be set to $0200 and the second to $02EF. Leading zeros
need not be entered.

If more than four significant hex digits are entered such as in

Df2cca

the command will not be executed and a "?" will be printed on the console to
indicate that an error was detected. Similarly if an illegal number of
parameters is entered for the command used, the command will not be
executed. If a given parameter is skipped by typing a comma with no other
hexadecimal entries, then the parameter is set to 0000.

Upper Case/Lower Case
The debugger includes a case translation feature so that commands,
parameters, or file designators may be entered in upper or lower case.

Termination
Control is returned to the DOS/65 CCM by entering a (ctl-c) in response to
the DEBUG prompt. A warm boot is executed as a result of this action and
the contents of the TEA are not altered. This allows programs or data files to
be altered by DEBUG and then saved using the SAVE nn UFN command in
CCM.

Editing
Command lines may be edited using normal DOS/65 buffered input editing
characters ((ctl-r), (ctl-x), (ctl-p), (delete)).

Output Hold
During long outputs the normal DOS/65 hold character (ctl-s) may be used
to freeze the output in order to view a particular portion of the output for
extended periods.

3.4 COMMAND DESCRIPTIONS

VERSION 2.1
8

3.4.1 GROUP 1 (FILE MANIPULATION COMMANDS)
The commands within Group 1 (I and R) provide the ability to load DOS/65 files into the
TEA for subsequent modification and testing.

3.4.1.1 I (INPUT)
The I commands allows the user to construct a File Control Block (FCB) for any DOS/65
file. This command does not actually read the file.

The I command is unique in that, while it can have no hexadecimal parameters, it must be
followed by a DOS/65 unambiguous file name (UFN). That UFN can also include a drive
specification if the desired file is located on a drive other than the default drive. The UFN
must meet the DOS/65 standards and thus can not contain illegal characters or spaces
and must have a name field of eight or fewer characters and a type field of three or fewer
characters. The UFN can be separated from the I (or i) command letter by one or more
spaces. The following are examples of legal I commands:

i test.com

I a:test.kim

i .b

The following are examples of illegal I commands:

i* not a UFN

i a b.com embedded space

i k:test.kim illegal drive

I testfileO UFN too long

3.4.1.2 R (READ)
The R command reads the UFN previously specified by an I command into memory. If the
type field of the UFN is COM then the file is assumed to be a machine language file with
an implied origin at the beginning of the TEA. For all other types of files DEBUG.COM
assumes that the file is an object code file consisting of object code records of the form
normally generated by the DOS/65 assembler. While these files are normally of type KIM,
DEBUG.COM, treats all files which are not of type COM as "KIM" files. For these files the
actual load address is specified by the address field of each record.

3.4.1.2.1 R WITH NO PARAMETERS
If the R command is used without any parameters, COM files are loaded at the start of the
TEA. As discussed above all other files are loaded at the address specified by the

VERSION 2.1
9

address field of each record.

3.4.1.2.2 R WITH ONE PARAMETER
If a single parameter is used with the R command, it is used as an offset for the load
address. For COM files, the first load address will thus be TEA + parameter. Since the
addition is done as a 16 bit addition and any carry is ignored the effective load address
can be anywhere within the 6502 addressing range.

NOTE
Data can be loaded to any location above $200 and below the start of
DEBUG.

The following examples illustrate how the offset works for COM files.

TEA PARAMETER LOAD ADDRESS
$2000 E200 $200
$200 1000 $1200
$200 3 $203

For "KIM" files, the effective load address is calculated by adding the offset to the starting
address specified in each record. The following examples show how the offset works for
"KIM" file.

RECORD PARAMETER LOAD ADDRESS
;020200A94100EE 103 $0303
;02F000A02001B1 F000 $E000

3.4.2 GROUP 2 (MEMORY EXAMINATION COMMANDS)
The commands in this group (D and L) allow the contents of memory to be examined
either as bytes/characters or as machine instructions.

3.4.2.1 D (DISPLAY)
The D command displays the contents of the specified memory locations as both
hexadecimal bytes and, if possible, as ASCII characters. The general form of the display
consists of a four digit hexadecimal field showing the first address displayed followed by
the memory contents in hexadecimal and then the ASCII characters (msb is ignored)
represented by the memory contents. Non-printing characters are shown as the "."
character. The number of bytes printed on each line is determined by the console line
length specified in SIM. The following line is an example of the D output and shows how
ASCII characters are printed.

VERSION 2.1
10

O2OO 4C OO 1O A9 15 L..).

NOTE
If an attempt is made to execute a D command for which the pointer would
"wrap-around" (i.e., go from $FFFF to $OOOO), the command will not be
executed.

3.4.2.1.1 D WITH NO PARAMETERS
If no parameters are entered then enough bytes will be displayed to fill or almost fill the
console screen. The data will begin at the current pointer. After execution the pointer will
point to the byte following the last byte displayed.

3.4.2.1.2 D WITH ONE PARAMETER
This form of the D command functions like the D command with no parameters, however,
in this case the pointer is set to the value of the parameter before the command is
executed.

3.4.2.1.3 D WITH TWO PARAMETERS
In this case, the pointer is set to the value of the first parameter as was done for the one
parameter case. The difference is that the memory contents through the address
corresponding to value of the second parameter are displayed rather than only the
number required to fill or nearly fill the screen as was the case previously.

3.4.2.2 L (LIST)
The L command lists the contents of the specified memory locations as disassembled
machine language. Each line contains one instruction and its operands, if any. All illegal
opcodes are printed as question marks. All operands are shown in hexadecimal. The
following example shows a typical L command output:

0200 4C 00 10 JMP $1000
0203 A9 15 LDA #$15

In general the machine language shown is identical to that specified by the DOS/65
Assembler except that the operand field for accumulator mode instructions is blank rather
than an A as required by the assembler.

VERSION 2.1
11

 Printing with msb = 1

 Printing with msb = 0

 Non printing Non printing

3.4.2.2.1 L WITH NO PARAMETERS
If no parameters are used, the L command will disassemble instructions (not bytes)
beginning at the current value of the pointer. Enough instructions will be disassembled to
fill the screen. After completion of the operation the pointer will be set to the first byte after
the last opcode/operand displayed.

3.4.2.2.2 L WITH ONE PARAMETER
For the L command with one parameter the pointer is set to the value of the parameter
and then enough instructions are disassembled to fill the screen.

3.4.2.2.3 L WITH TWO PARAMETERS
Rather than disassembling a fixed number of instructions this mode of the L command will
disassemble instructions from the address determined by the first parameter through the
address equal to the second parameter. The value of the pointer after completion of this
command will be set to the location of the byte immediately after the last instruction
disassembled. If the last instruction had no operand then the pointer will be equal to
(parameter #2)+1; if one byte operand then (parameter #2)+2; or if a two byte operand
then (parameter #2)+3.

3.4.3 GROUP 3 (MEMORY MODIFICATION COMMANDS)
The commands in this group (S and F provide the ability to modify the memory contents
on a word, byte, or block basis. As such, they are most useful in entering code or data
values during testing of a program.

3.4.3.1 S (SUBSTITUTE)
The S command is the most useful memory modification command. Execution of a S
command with zero or one parameter places the system into a special data entry mode. In
this mode, the memory pointer and the current contents are printed and the user can
modify the contents by entering two hexadecimal digits. When in this data entry mode, all
digits must be entered. For example, to enter a value of $00 the correct entry is 00, for
$0A it is 0A, and for $11 it is 11. If the current contents are not to be modified, a "." is
entered. When modification is complete a (cr) is entered. Any non-hexadecimal character
(other than "." or (cr)) will also terminate the S command, however, in that case an error
message will be displayed. The following example illustrates how the S command
operates. The user entries are underlined.

DISPLAY BYTE AFTER EXECUTION
-200 4C 20 20
-201 00 . 00
-202 10 F8 F8
-203 50 (cr) 50

Execution of the S command with two parameters functions quite differently and

VERSION 2.1
12

will be explained below.

3.4.3.1.1 S WITH NO PARAMETERS
For the S command with no parameters execution is as described above. In this
case the current value of the pointer is used.

3.4.3.1.2 S WITH ONE PARAMETER
This form of the S commands function as described above except that the pointer is set to
the value of the parameter before execution is begun.

3.4.3.1.3 S WITH TWO PARAMETERS
This mode of the S command is a special case which allows both bytes of a word to be
modified in one step. The contents of the word are set to the value of the second
parameter. The location of the low order byte is the value of parameter 1 and the location
of the high order byte is (parameter
1) + 1. Thus the following command

S 100, DA06

would result in the following:

LOCATION CONTENTS
0100 06
0101 DA

The chief value of this mode of the S command is in changing JMP or JSR operands in
one step. This is especially helpful, for example, if I/O vectors must be altered and if
changing one byte and not the other would destroy the users ability to talk to DEBUG.

3.4.3.2 F (FILL)
The Fill command has only one mode and requires three parameters to be entered. The
action taken is to fill the memory locations from Parameter 1 through Parameter 2 with the
value of Parameter 3. The value of Parameter 3 must be in the range 00 through FF or an
error will be detected.

The following command is an example of the Fill command

F 200, 20F, 1A

In this case the contents of location $200 through $20F will be set to $1A.

At the conclusion of execution the pointer will be set to the value of the second parameter.

VERSION 2.1
13

NOTE
If the pointer "wraps-around"; i.e., goes from $FFFF to $0000, during
execution of a F command, then execution will halt with the last location
"filled" being $FFFF.

3.4.4 GROUP 4 (CPU STATE COMMANDS)
The eXamine command is a powerful and useful command for program debugging. It can
be used either to display the CPU state or to modify the CPU state. The discussion in
Section 3.2 pointed out that DEBUG.COM maintains a set of CPU state registers. The
significance of that fact is that upon execution of a G command the CPU state is set equal
to the contents of those registers. Similarly, if breakpoints are used then the contents of
those registers are set to the value of the associated CPU register or flag at the location of
the breakpoint. It is obvious that an ability to view and modify those values is useful in the
debugging process.

3.4.4.1 X WITH NO PARAMETERS
In this mode the CPU registers will be displayed in the following format.

* A X Y S NV?BDIZC

0200 3A 2F 80 FF 10011011

The 16 bit program counter (*) is displayed as four hexadecimal digits, the four 8 bit
registers (A, X, Y and S) are displayed as two hexadecimal digits, and each of the bits
within the processor status byte are displayed as single binary digits.

3.4.4.2 X WITH ONE PARAMETER
The format used to alter a given register or bit is not the same as that used to enter a
normal single parameter command. In this case the single parameter must be preceded
by the register or bit designator (*, A, X, Y, S, N, V, B, D, I, Z, or C) and an equal sign.
Thus the following command

xa=3

would set A to $03. The parameter must match the specified register or flag in terms of
range. The allowable parameter ranges are:

* 0000 through FFFF
A, X, Y, S 00 through FF
N, V, B, D, I, Z, or C 0 or 1

If the allowable range is exceeded, an error message will be printed and the command will
not be executed.

After the specified register is set to the parameter value, the resulting CPU state is printed
VERSION 2.1

14

as is done for the X command with no parameters.

3.4.5 GROUP 5 (EXECUTION COMMAND)
The single execution command available within DEBUG is the G command. This
command sets the CPU registers to the current values of the CPU State registers.
Variations of this command also allow the program counter (*) to be altered prior to
execution. Even more importantly, variations are available so that the user can set one or
two breakpoints. If the breakpoints are encountered during execution of the program in
memory, the user is returned to the DEBUG command mode and the instruction at which
the break occurred is shown in disassembled form and the CPU state when the break was
encountered is displayed. The following example illustrates a typical result of a G
command. (Command format is explained in the following sections.)

-G 200,3FF,101F
101F 20 1A 32 JSR $321A Display After
* A X Y S NV?BDIZC Breakpoint @
101F 5A 33 8F FC 10010101 $101F Is Encountered

NOTE
All breakpoints are cleared upon return to DEBUG and execution may be
continued by execution of another G command. If the user is not satisfied
with the results, the CPU state can also be altered using the X command
before program execution is continued.

3.4.5.1 G WITH NO PARAMETERS
This mode of the G command will cause execution of the program in memory to be
initiated (or continue) at the current value of the program counter (*). No breakpoints are
set and all CPU registers are set to the contents of the CPU state registers.

3.4.5.2 G WITH ONE PARAMETER
With one parameter the G command is executed without breakpoints. The program
counter is set to the value of the parameter and all other CPU registers are set to the
values of the CPU state registers.

3.4.5.3 G WITH TWO PARAMETERS
For this mode of the G command a single breakpoint is set at the location determined by
the second parameter. The program counter is set to the value of the first parameter
except that if the value of the first parameter is zero, the current program counter is used
without alteration. This allows rapid continuation after a previous breakpoint by entering a
command such as

G,AC1B

which will execute at the current program counter and will set a new breakpoint at $AC1B.

VERSION 2.1
15

3.4.5.4 G WITH THREE PARAMETERS
This mode of the G command functions just like the G command with two parameters
except that two breakpoints are set. The first breakpoint will be set at the second
parameter and the second breakpoint will be set at the third parameter.

VERSION 2.1
16

APPENDIX A - BREAKPOINTS

A.1 GENERAL
The use of breakpoints in program debugging for the 6502 is facilitated by the BRK
opcode ($00) and the IRQ/BRK vector located at $FFFE. In most systems that vector is
either in RAM or points to a JMP ($4C) in RAM or to an indirect JMP ($6C) for which
indirect address in contained in RAM. DEBUG searches for one of those conditions at
initial execution. If DEBUG finds one of those conditions it sets a flag indicating that
breakpoints are allowed. At the same time, the vector or jump is set to point to a special
routine in DEBUG and an appropriate message is sent to the console. If one of those
conditions is not found, breakpoints are not allowed and the user is so informed. Since
breakpoints can not be set in this case, the G commands which execute and set
breakpoints will cause execution to occur but without breakpoints.

CAUTION
It is possible for DEBUG to enter an infinite loop if the IRQ/BRK vector
is in ROM and points to a JMP () for which the indirect address is in
ROM. If, for example, the IRQ/BRK vector was in ROM and was set at
$F800 and if $F800 contained a JMP ($FFFE), i.e., a $6C $FE $FF, then
DEBUG would loop forever.

A.2 OPERATION
The functional flow which occurs after a G command is executed with breakpoints is
illustrated in the pseudo-code at the end of this appendix. Note that once the user
program is entered the only way that the user can normally force termination of the
program is through use of such steps as a system RESET or a NMI if the system allows
such action. If either of these two steps is taken it is possible that DOS/65 can be
re-entered without destroying the program in memory if the user has available a monitor
which can be used to execute at designated locations and if the RESET or NMI does not
destroy the contents of memory. Probably the most obvious way of doing that is to go
(using the monitor) to $100 and execute that JMP. That action will cause a warm boot to
occur after which the memory contents can be saved. DEBUG could then be re-executed
using the saved program. This multi-step process is essential since DEBUG initially
overlays the lower part of the TEA when executed. (See Appendix B)

A.3 USER BRK OR INTERRUPT
DEBUG does not preclude use of interrupts or the BRK command by the user. Although
DEBUG sets the IRQ/BRK vector (or the destination JMP) to point to the BRK handler in
DEBUG, the original destination address is preserved by DEBUG. When the handler is
entered due to an interrupt or a BRK, it determines whether the action was the result of a
breakpoint set by DEBUG or some other action. If the cause was not due to a DEBUG set
breakpoint then control is passed to the address originally set by the user in the IRQ/BRK
vector (or the destination JMP). One limitation of the approach used to allow this flexibility
is that the execution time of an interrupt or user BRK when running under DEBUG is

VERSION 2.1
17

significantly slower. If IRQ or BRK response time is critical, it is most likely that breakpoints
should not be allowed. As discussed above DEBUG will not alter the IRQ/BRK vector (or
destination JMP) if it detects that the vector is in ROM and if the destination pointed to by
the IRQ/BRK vector is not a JMP.

The key to "tricking" DEBUG then is to ensure that one of the latter conditions exists when
DEBUG is executed. Making the destination of the IRQ/BRK vector something other than
a JMP is probably the best since even if it should be a JMP for correct operation it is easy
to change it to the correct opcode (using DEBUG) before the program is executed.

PSEUDO-CODE

FLOW AFTER G COMMAND EXECUTION

IF PARAMETER 1 NOT ZERO
THEN

SET * TO PARAMETER 1
IF BREAKPOINTS ALLOWED

THEN
INSERT BRK AT PARAMETER 2 AND PARAMETER 3

SET CPU FROM (* A X Y S N V B D I Z C)
JMP *

USER PROGRAM

START AT *
IF BRK OR IRQ

THEN
JMP ($FFFE)

FLOW UPON BRK OR IRQ RETURN TO DEBUG

IF USER BRK OR IRQ
THEN

JMP USER IRQ/BRK
CLEAR BREAKPOINTS
SET POINTR TO *
EXECUTE L AT *
EXECUTE X
WAIT FOR USER COMMAND

VERSION 2.1
18

APPENDIX B - DEBUG MEMORY USAGE

B.1 OVERLAY CONCEPT
DEBUG is a unique program since it is a transient which allows other transients to also be
executed. This capability is realized by having DEBUG relocate itself after being loaded
but before the program to be debugged is loaded. Figure B-1 shows what the system
memory looks like immediately after DEBUG is loaded and what it looks like after DEBUG
is relocated.

The most important aspects of this are:

- The process of loading DEBUG destroys the previous contents of the lower part
of the TEA.

- DEBUG during execution replaces the CCM.

- The JMP to PEM at $103 is modified to point to a JMP located at the beginning of
DEBUG. This allows user programs which use the vector at $103 to determine how
much memory is free to function without destroying DEBUG.

CAUTION
Free user memory will be reduced when DEBUG is running and thus
there may be insufficient memory for some applications.

B.2 PAGE ZERO USAGE
DEBUG does use the first few bytes in page zero immediately after being loaded to
accomplish the relocation. Once DEBUG is relocated and executed it does not use page
zero memory.

B.3 PAGE ONE USAGE
DEBUG uses the top few bytes of Page One for the stack and uses the lower portions of
Page One for the normal DOS/65 JMP's, FCB, and buffer.

VERSION 2.1
19

SIM SIM
PEM PEM
CCM EXECUTE MODULE

JMP PEM

EXECUTE MODULE
TEA START > LOAD MODULE

$103 > JMP PEM JMP EXECUTE-3
$100 > JMP SIM+3 JMP SIM+3

AS LOADED EXECUTING
DEBUG MEMORY MAP

VERSION 2.1
20

APPENDIX C - INTERRUPTS UNDER DEBUG

Problems may be evident when using DEBUG.COM with programs which alter the
IRQ/BRK vector or the JMP pointed to by that vector. At initial execution DEBUG.COM
alters either the vector or the JMP so that breakpoints can be used. Because of that, a
program which is run under DEBUG can not then alter the vector or JMP. If either is
altered, strange things will happen when trying to run DEBUG with breakpoints.

There is a way around the problem. DEBUG does preserve whatever was in the vector or
JMP when it is executed and then will allow a user interrupt routine to be executed after
determining that the interrupt was not due to a DEBUG set breakpoint. The trick then is
simply to make sure that the vector or JMP is set to the correct location before executing
DEBUG. A short program could be written to do that or the program to be debugged could
be used with an appropriate dummy exit inserted to kill execution after the vector or JMP
is set. When the program to be debugged is executed under DEBUG, the code which sets
the vector or JMP should be bypassed.

VERSION 2.1
21

APPENDIX D - DEBUG DATA LOADING

DEBUG prevents the user from loading a .COM or .KIM file to any location at or above the
start of the DEBUG execute module. While a reasonable self protection feature, it is
restrictive. Some users may have memory above the region normally occupied by
transients or DOS/65 and would like to be able to load files into that region. The following
modification to DEBUG can be used to defeat the checks which prevent loading data at or
above the start of DEBUG.

CAUTION
With the following modification in place it will be easy to crash the
system. Use great care in loading files with the modified DEBUG.
Values shown below are valid for DEBUG.COM V2.02 only.

Step 1 Enter the following CCM command:
DEBUG DEBUG.COM

Step 2 Use the S command to change the following bytes to NOP ($EA).
TEA+$588
TEA+$589
TEA+$58A

TEA+$62D
TEA+$62E
TEA+$62F

Step 3 Enter ctl-c.

Step 4 Enter the following CCM command:
SAVE 14 XDEBUG.COM

It is recommended that the standard DEBUG be retained and that this modified version
only be used when necessary to minimize the risk of crashes.

VERSION 2.1
22

	SECTION 1 - INTRODUCTION
	1.1 OVERVIEW AND CONCEPT
	1.2 KEY FACTS

	SECTION 2 - EXECUTION
	SECTION 3 - COMMANDS
	3.1 OVERVIEW
	3.2 PROGRAM VARIABLES
	3.3 BACKGROUND
	3.4 COMMAND DESCRIPTIONS
	3.4.1 GROUP 1 (FILE MANIPULATION COMMANDS)
	3.4.1.1 I (INPUT)
	3.4.1.2 R (READ)
	3.4.1.2.1 R WITH NO PARAMETERS
	3.4.1.2.2 R WITH ONE PARAMETER

	3.4.2 GROUP 2 (MEMORY EXAMINATION COMMANDS)
	3.4.2.1 D (DISPLAY)
	3.4.2.1.1 D WITH NO PARAMETERS
	3.4.2.1.2 D WITH ONE PARAMETER
	3.4.2.1.3 D WITH TWO PARAMETERS

	3.4.2.2 L (LIST)
	3.4.2.2.1 L WITH NO PARAMETERS
	3.4.2.2.2 L WITH ONE PARAMETER
	3.4.2.2.3 L WITH TWO PARAMETERS

	3.4.3 GROUP 3 (MEMORY MODIFICATION COMMANDS)
	3.4.3.1 S (SUBSTITUTE)
	3.4.3.1.1 S WITH NO PARAMETERS
	3.4.3.1.2 S WITH ONE PARAMETER
	3.4.3.1.3 S WITH TWO PARAMETERS

	3.4.3.2 F (FILL)

	3.4.4 GROUP 4 (CPU STATE COMMANDS)
	3.4.4.1 X WITH NO PARAMETERS
	3.4.4.2 X WITH ONE PARAMETER

	3.4.5 GROUP 5 (EXECUTION COMMAND)
	3.4.5.1 G WITH NO PARAMETERS
	3.4.5.2 G WITH ONE PARAMETER
	3.4.5.3 G WITH TWO PARAMETERS
	3.4.5.4 G WITH THREE PARAMETERS

	APPENDIX A - BREAKPOINTS
	A.1 GENERAL
	A.2 OPERATION
	A.3 USER BRK OR INTERRUPT

	APPENDIX B - DEBUG MEMORY USAGE
	B.1 OVERLAY CONCEPT
	B.2 PAGE ZERO USAGE
	B.3 PAGE ONE USAGE

	APPENDIX C - INTERRUPTS UNDER DEBUG
	APPENDIX D - DEBUG DATA LOADING

