
ASM - DOS/65 ASSEMBLER

VERSION 2.1

 (Copyright) Richard A. Leary
180 Ridge Road

Cimarron, CO 81220

This documentation and the associated software is not public domain, freeware, or
shareware. It is still commercial documentation and software.

Permission is granted by Richard A. Leary to distribute this documentation and software
free to individuals for personal, non-commercial use.

This means that you may not sell it. Unless you have obtained permission from Richard
A. Leary, you may not re-distribute it. Please do not abuse this.

CP/M is a trademark of Caldera.

VERSION 2.1
1

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION...3
1.1 OVERVIEW AND CONCEPT..3
1.2 KEY FACTS..3

SECTION 2 EXECUTION..5
2.1 COMMON DRIVE..5
2.2 INDEPENDENT DRIVES..5
2.3 PRN REDIRECTION OR DELETION..6
2.4 KIM DELETION...7

SECTION 3 OPERATION..8
3.1 LINE FORMAT..8

3.1.1 LINE NUMBER...8
3.1.2 LABEL...8
3.1.3 OPCODE..9
3.1.4 OPERAND..9
3.1.5 COMMENT...11

3.2 EXPRESSIONS..12
3.2.1 CONSTANTS..12
3.2.2 VARIABLES..12
3.2.3 OPERATIONS..13

3.3 CAUTIONS..13
3.3.1 PAGE ZERO DEFINITIONS...13
3.3.2 PAGE ZERO USAGE...14
3.3.3 SYMBOL LENGTH...15
3.3.4 ERRORS..15

APPENDIX A - ERROR MESSAGES..16

APPENDIX B - ASSEMBLER VERSION DESIGNATION..17

APPENDIX C – SYMBOL LENGTH..18

VERSION 2.1
2

SECTION 1 - INTRODUCTION

1.1 OVERVIEW AND CONCEPT
The DOS/65 assembler, file ASM.COM, assembles source files of type .ASM from disk
and generates a hexadecimal code file of type .KIM. The .KIM file may be converted to
a binary file using the program MAKECOM.COM and then executed. The .KIM file is
also a normal ASCII text file and may be edited using the DOS/65 editor, EDIT.COM.
The .KIM file may also be loaded (with or without an offset) and debugged using the
DOS/65 debugger DEBUG.COM. The assembler also creates a listing file of type .PRN
showing the source code and the object code.

1.2 KEY FACTS
The assembler conforms to the MOS Technology standards and has a few extensions.
Specifically, the assembler:

a. Allows use of the horizontal tab character ($09) or (ctl-i)) as a field separator
instead of a blank. Actually the tab can be used anywhere a space would be
appropriate. Upon input of the source text, the tab is expanded to a modulo 8
column. The use of a tab within an ASCII string is also permissible but will produce
results which may not be what was desired. For example, if "t" is the tab character,
the string .BYT 'ABtCD' will be translated to .BYT 'AB CD', 'AB CD', etc. as a
function of the source column, including any line number, at which the tab character
appeared. If a tab is desired as part of a character string, the correct way is to use
the syntax

.BYT 'AB',$9,'CD'

b. Supports the use of < and >. as prefixes to an operand to signify the high and low
bytes of the 16 bit value of the operand. The following examples may help in
understanding this feature.

LABEL = $FA23
23 .BYT <LABEL
FA .BYT >LABEL

c. Supports use of ASCI characters as operands in an expression. Only single
characters are allowed and the only allowable form is 'x' where x is the desired
ASCII character. Confusion can arise since MOS Technology standards allow ASCII
characters used as the only operands of an immediate instruction to drop the
closing quote. Thus the following formats are legal:

.BYT 'A'

.BYT 'A'+3
LDA #'A
LDA #'A'

VERSION 2.1
3

LDA #'A'+3

while the following formats are illegal:

.BYT 'A

.byt “A
LDA #'A+3

d. ASM.COM accepts both upper and lower case input and thus the following two
lines would result in the same code:

lda #45
LDA #45

Lowercase to uppercase conversion is not done within a string and thus the
following .BYT directives would result in different code:

.byt 'ABC'

.byt 'abc'

NOTE
In this manual parentheses will be used to enclose the names of single
characters, e.g., (cr) for carriage return. Parentheses are also used to
enclose entire fields. The use will be evident from the context.

VERSION 2.1
4

SECTION 2 EXECUTION

2.1 COMMON DRIVE
If the .ASM, .KIM, and .PRN files are to be located on the same drive the assembler is
executed by use of a CCM command line similar to the examples which follow (user
inputs are underlined):

CCM INPUT ACTION

A>asm source ASM.COM is loaded from the default drive (A). Assembles file
SOURCE.ASM on the default drive. Object code file
SOURCE.KIM is written to the default drive and the listing file,
SOURCE.PRN is written to the default drive.

A>asm b:source Same as first example except that SOURCE.ASM is read from
drive B and SOURCE.KIM and SOURCE.PRN are written to
drive B.

A>b:asm source Same as first example except that ASM.COM is loaded from
drive B. SOURCE.ASM, SOURCE.KIM, and SOURCE.PRN
remain on drive A.

A>b:asm b:source In this example ASM.COM, SOURCE.ASM,
SOURCE.KIM, and SOURCE.PRN are all on drive B.

The assembler command sequence can be generalized as follows:

(drive:)asm (drive:)name

where the (drive:) terms represent optional items as discussed above.

2.2 INDEPENDENT DRIVES
ASM.COM also allows independent selection of the drive for the .ASM file, the drive for
the .KIM file, and the drive for the .PRN file. The command lines shown above required
the drive for those files to be the same and to be either the default or the drive specified
by a prefix to the file name. The following command lines illustrate how to alter that
drive assignment:

asm program.aba

VERSION 2.1
5

 PRN file drive (A in this example)

 KIM file drive (B in this example)

 ASM file drive (A in this example)

asm b:program.a

A logical description of the logic used by ASM to determine the drive for each file is as
follows:

DRIVE(.ASM)=DEFAULT
DRIVE(.KIM)=DEFAULT
DRIVE(.PRN)=DEFAULT
IF PREFIX

THEN
DRIVE(.ASM)=PREFIX
DRIVE(.KIM)=PREFIX
DRIVE(.PRN)=PREFIX

IF (FIRST CHAR AFTER . = BLANK)
THEN

EXIT
ELSE

DRIVE(.ASM)=FIRST CHAR AFTER .
IF (SECOND CHAR AFTER . = BLANK)

THEN
EXIT

ELSE
DRIVE(.KIM)=SECOND CHAR AFTER .

IF (THIRD CHAR AFTER . = BLANK)
THEN

EXIT
ELSE

DRIVE(.PRN)=THIRD CHAR AFTER .
EXIT

2.3 PRN REDIRECTION OR DELETION
If it is desired to send the .PRN file only to the console then the command line format
shown in Section 2.2 can be used except that the third position after the "." is entered
as a X. Thus the command line

asm program.abx

would read the .ASM file from drive A, write the .KIM file to drive B, and send the .PRN
file to the console. If it is desired to completely eliminate the .PRN file then the

VERSION 2.1
6

 ASM file drive (A in this example)

 KIM & PRN file drive (B in this example)

command line format shown in section 2.2 can be used except that the third position
after the "." is entered as a Z. Thus the command line

asm program.abz

would function like the previous example but would not produce a .PRN file.

2.4 KIM DELETION
If it is desired to completely eliminate the .KIM file then the command line format shown
in Section 2.2 can be used except that the second position after the "." is entered as a
Z. Thus the command line

asm program.azx

would read the .ASM file from drive A, produce no .KIM file, and would send the .PRN
file to the console.

VERSION 2.1
7

SECTION 3 OPERATION

As discussed in Section 1.2, the assembler is compatible with the MOS Technology
standards with respect to operands, opcodes, labels and comments. It does not provide
the same set of assembler directives as defined in either the Cross Assembler or the
Microcomputer Family KIM Assembler Manual. The directives provided and each
element of the syntax will be discussed in detail in the following sections.

3.1 LINE FORMAT
The general format for an input line to the assembler is

(line number) (label) (opcode) (operands) (comments)(cr)(lf)

The parentheses indicate that the applicable field is not absolutely necessary in all
lines. The only elements which must appear in each line are the (cr) and (lf) characters
at the end of the line. Each field, if present, must be separated from adjacent fields by a
(blank) or a (tab). If certain fields are present, it may then be necessary to include other
fields. In particular, many of the legal opcodes require an operand and thus the operand
field must be present when those opcodes are used. The comment field is always
optional and the label field is only needed when the line must be referenced by another
line. Lines are limited to a length of 80 characters in addition to the (cr) and (lf).

3.1.1 LINE NUMBER
The line number field is always optional and even if present will be ignored by the
assembler as long as it consists only of contiguous decimal digits.

3.1.2 LABEL
A label is a string of alphanumeric characters which must begin with an uppercase or
lowercase alphabetic character (A through Z or a through z) and is limited in length to a
predetermined value. The standard length is 16 characters, however, as explained in
the Appendix, the assembler can be configured to limit label lengths to other values.

The characters A, S, P, X and Y (uppercase or lowercase) are reserved for special uses
by the assembler and may not be used as labels nor may any of the 56 legal opcodes.
Also, labels may not contain any characters other than alphabetic characters or the
decimal digits 0 through 9. Labels need not begin in the first column of each line, but if
used must begin with the first non-blank or non-tab character in the line. The following
are examples of legal and illegal labels:

VERSION 2.1
8

3.1.3 OPCODE
The opcode field may contain one of the 56 legal opcodes or one of the legal
assembler directives. The legal opcodes are listed in Table 1 and the legal assembler
directives are listed in Table 2. The user is referred to the 6502 Programming Manual
for the details about each opcode and its allowable addressing modes or operands.
Except for the equate (=), the assembler directives are distinguished from the opcodes
by use of a leading period. While the assembler directives are listed in Table 2 using
the "full" name, only the first three characters are significant and are actually used by
the assembler when matches are attempted between the input and the legal assembler
directives. Thus, the mnemonics shown in the minimum name column are all that need
be used.

Neither the .END nor .PAG directive can have an operand field. The =, .BYT, .WOR,
and .OPT directives must have one or more operands. If more than one operand is
used, then they are separated by commas. The value of each operand for the .BYT
directive must be between $00 and $FF (inclusive) while the value of each operand for
the = and .WOR directives must be between $0000 and $FFFF (inclusive). The
operands for the .OPT directive are not operands in the usual sense but are parameters
which are used to set the various flags maintained by the assembler. Table 3 shows the
full set of parameters which may be used. As was the case for the directives only the
first three characters need be used. The parameters may be used in any order and any
number of them may be used as long as the line length restrictions are not violated. If
complementary parameters (e.g., SYM and NOS) are used in a single line, the last
(rightmost) parameter used will be in effect upon printing of that line and processing of
the next line. If no .OPT directive is used, the conditions marked as default will be in
effect for the assembly.

3.1.4 OPERAND
Except for the .OPT assembler directive parameters discussed in Section 3.1.1.3,
operands must be legal expressions. The only exceptions to that rule are a) those
operands which can address the accumulator (e.g., ASL A) in which case an A is used
as the operand, b) those opcodes which have no operand (e.g., CLC), and c) those

VERSION 2.1
9

LEGAL ILLEGAL REASON
LOAD X reserved
A1 AND opcode
opcode 2 first not alpha
TWO1T B$ non-alphanumeric
theand A1234567890123456 too long
ANDORA

opcodes which, because of the addressing mode used (e.g., LDA #VALUE or LDA
(VALUE),Y) have a complex operand format. In the latter case a portion of the operand
field must still be a legal expression. For the examples shown the term "VALUE" must
be a legal expression as defined in Section 3.1.2. The special formats required for the
various addressing modes are summarized in Table 4. In all cases (expr) must be
greater than or equal to zero. For further detail see the 6502 Programming Manual.

NOTE
If the NOLIST option is set then the .PAGE directive will not cause a
formfeed to be inserted in the .PRN file. The Formfeed character used
by .PAGE is determined by the Formfeed character in the console
definition block in SIM.

VERSION 2.1
10

TABLE 1. OP CODES

ADC Add Operand with Carry
to Accumulator

AND And Operand with
Accumulator

ASL Shift Operand Left One
Bit

BCC Branch on Carry Clear

BCS Branch on Carry Set BEQ Branch on Zero Result BIT Test Bits in Memory with
Accumulator

BMI Branch on Results Minus

BNE Branch on Result not
Zero

BPL Branch on Result Plus BRK Break BVC Branch on Overflow
Clear

BVS Branch on Overflow Set CLC Clear Carry Flag CLD Clear Decimal Mode CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag CMP Compare Accumulator

and Operand
CPX Compare Index X and
Operand

CPY Compare Index Y and
Operand

DEC Decrement Operand by
One

DEX Decrement Index X by
One

DEY Decrement Index Y by
One

EOR Exclusive-or Operand
with Accumulator

INC Increment Operand by
One

INX Increment X by One INY Increment Y by One JMP Jump to New Location

JSR Jump to New Location
Saving Return Address

LDA Load Accumulator LDX Load Index X LDY Load Index Y

LSR Shift Operand One Bit
Right

NOP No Operation ORA Or Operand with
Accumulator

PHA Push Accumulator on
Stack

PHP Push Processor Status
on Stack

PLA Pull Accumulator from
Stack

PLP Pull Processor Status
from Stack

ROL Rotate Operand One Bit
Left

ROR Rotate Operand One Bit
Right

RTI Return From Interrupt RTS Return from Subroutine SBC Subtract Operand and
Carry from Accumulator

SEC Set Carry Flag SED Set Decimal Mode SEI Set Interrupt Disable
Status

STA Store Accumulator

STX Store Index X STY Store Index Y TAX Transfer Accumulator to
Index X

TAY Transfer Accumulator to
Index Y

TSX Transfer Stack Register
to Index X

TXA Transfer Index X to
Accumulator

TXS Transfer Index X to Stack
Register

TYA Transfer Index Y to
Accumulator

TABLE 2. ASSEMBLER DIRECTIVES

FULL NAME MINIMUM NAME MEANING
.END .END End Assembly
.BYTE .BYT Define Byte Values
.WORD .WOR Define Word Values
.OPTION .OPT Set Assembler Options
= = Equate Label to Expression
.PAGE .PAG Insert Formfeed in List Output

3.1.5 COMMENT
The comment field may contain any arbitrary text (upper or lower case) and is used to
explain the programmer's intent. The comment field may begin at any time if preceded
by a (;). If the preceding fields (i.e., opcode and operand) are present then the
comment field need not begin with a (;). The following examples show legal and illegal

comments.

VERSION 2.1
11

TABLE 3. OPTION PARAMETERS

FULL NAME MINIMUM NAME MEANING
*SYMBOLS SYM Print Symbol Table
NOSYMBOLS NOS Do Not Print Symbol Table
*ERRORS ERR If NOLIST Print Errors
NOERRORS NOE If NOLIST Do Not Print Errors
*LIST LIS Write Listing
NOLIST NOL Do Not Write Listing
GENERATE GEN Print Strings
*NOGENERATE NOG Do Not Print Strings
*KIM KIM Generate KIM file
NOKIM NOK Do Not Generate KIM File

*Default Values

TABLE 4. OPERAND FORMATS

MODE FORMAT COMMENTS
Accumulator A
Absolute (expr)
Zero Page (expr) (expr) must be < 256
Implied no operand
Immediate (expr) (expr) must be < 256
(Indirect, X) ((expr), X) (expr) must be < 255
(Indirect), Y ((expr)), Y (expr) must be < 255
Zero Page, X (expr), X (expr) must be < 256
Absolute, X (expr), X
Absolute, Y (expr), Y
Relative (expr) (expr)-* must be > -128 and < 128
Indirect ((expr))
Zero Page, Y (expr), Y (expr) must be 256

NOTE
(expr) is an expression meeting the requirement of Section 3.1.2.

LEGAL ILLEGAL
;comment .byt comment
.BYT 3 comment LDA comment

3.2 EXPRESSIONS
The key to the effective use of an assembler is an understanding of the power available
in formulating expressions. The following sections define the terms which make up
expressions and how they may be combined.

3.2.1 CONSTANTS
The assembler recognizes both numeric and non-numeric constants. The numeric
constants may be of the following types:

Binary %bbbbbbbbbbbbbbbb
Octal @oooooo
Decimal nnnnn
Hexadecimal $hhhh

b, o, n, or h represent single binary (0, 1), octal (0 through 7), decimal (0 through 9), or
hexadecimal (0 through 9, A through F, and a through f) digits respectively. As few as
one digit may be used or as many as required to represent values up to the limit (65535
or its equivalent) imposed by use of 16 bits for each value may be used.

Non-numeric constants may be single ASCII characters enclosed in quotes such as

'A'
'z'
'*'

or may be strings enclosed in quotes (e.g., 'ABC*$' or “Error Message”). While
single character constants can be used in any expression, strings must be used by
themselves and only as an operand of a .BYT assembler directive. If a single ASCII
character is used as the operand in an immediate addressing mode the closing quote is
not required. If a quote is desired as a member of a string, then a pair is used. Thus

'a quote '' is needed'

would be loaded as the string

a quote ' is needed

3.2.2 VARIABLES
A variable is nothing more than a label. It must be defined somewhere in the program.
When encountered during the assembly the symbol is replaced by its value. The only
variable which has special meaning is the character *. This character represents the
value of the program counter and if used in an expression will be replaced with the
value the program counter had prior to the start of the line in which it is used. As the

VERSION 2.1
12

character * is also used to signify multiplication operation, care must be exercised to
ensure that the correct result is obtained.

3.2.3 OPERATIONS
The available operations include the following:

UNARY
-
>
<

BINARY
-
+
* (multiplication)
/ (division)

The unary operators < and > must be applied only to labels and yield a value equal to
the most significant and least significant bytes respectively of the label. The binary
operators have no precedence; hence, all expressions are evaluated in strict left to right
order. If overflow results from an addition operation, the expression will be considered
to be erroneous as will a final result which is negative. Overflow in multiplication is
ignored as is the remainder resulting from a division operation. The following are
examples of valid and invalid expressions under these rules.

3.3 CAUTIONS
Although it is impossible to protect the programmer from all possible errors some are
discussed in the following sections.

3.3.1 PAGE ZERO DEFINITIONS
Perhaps the easiest error to fall prey to in using the assembler is the failure to define
page zero addresses prior to their use in an operand field. This error will usually (not
necessarily always) give a "Label Previously Defined" error at some line following the
line which had the forward reference to page zero. The reason is simple - if during the
first pass the assembler encounters an operand field containing an undefined label, it
will allocate three bytes for the opcode and operand. If the label is later defined as a

VERSION 2.1
13

EXPRESSION VALUE ERROR
$FFF*$FFF $E001 No
$F7FF+$1000 $07FF Yes (Overflow)
10 - 15 $FFFB Yes (Negative)
$15/$33 $0000 No
<LABEL+1 $0040 No (for LABEL = $173F)
**2+1 $0403 No (for * = $201)
*-$300 $FFO1 Yes (Negative) (for * = $201)

page zero address the assembler will allocate only two bytes during the second pass.
Subsequent labels will now be off by one and will cause the error message to be
generated in all following lines in which labels are defined in terms of the current
program counter. The solution is simple - ALWAYS DEFINE PAGE ZERO LABELS AT
THE BEGINNING OF THE PROGRAM!

3.3.2 PAGE ZERO USAGE
While a program can be assembled for any location, the manner in which page zero
usage is defined is important. For programs which are to be executed in the DOS/65
TEA, either of the following two approaches will work (assuming that TEA is defined in
the code file!)

Example 1
;first variable definition follows and others
* = 0
DATA *= *+1
;other variable definitions follow as needed
VAR *= *+1
;the next line is the last variable definition
LAST *= *+1
;now set the program counter for the start of code
* = TEA
;executable code follows

Example 2:

;first variable definition follows
DATA = 2
;other variable definitions follow as needed
VAR = DATA+1 (or =3)
;the next line is the last variable definition
LAST = NXTLST+1 (or =location)
;now set the program counter for the start of code
* = TEA
;executable code follows

The following will assemble correctly but the .KIM file cannot be loaded by
MAKECOM.COM.

* = 0
;first variable definition follows and others
DATA .BYT 0
VAR .BYT 38
LAST .BYT $FF
;now set the program counter for the start of code
* = TEA

VERSION 2.1
14

;executable code follows

This last approach will not work since the .BYT directive not only defines the location of
each label, it also generates data (code) to be loaded at the defined location.
MAKECOM.COM will flag that as an error since it cannot create .COM files for any location
in page 0 or 1. The first two approaches will work since neither actually generates code.

3.3.3 SYMBOL LENGTH
The standard assembler is set to use labels of from one to sixteen characters in length.
Before discussing how to configure the assembler for other label lengths, the effects of
symbol length must be briefly discussed. Each symbol encountered during the
assembly is stored in a table. Each entry requires two bytes for the symbol value and as
many bytes as are specified as the maximum to hold the symbol itself.

If the assembler were configured for six character labels, a 16K system with the TEA
beginning at $200 could hold the symbol table, the assembler and the necessary
portions of DOS/65 even if as many as 500 symbols were used. If the allowable symbol
length is doubled to 12, then only about 300 symbols can be stored. While larger
systems will have no problem with long symbol length and large numbers of symbols,
such is not the case for 16K systems.

3.3.4 ERRORS
If errors are encountered during the assembly, do not attempt to use the KIM file as the
data contents and address structure will probably be in error. The KIM file might be
loadable either with MAKECOM.COM or DEBUG.COM but the results of executing the
erroneous program are unpredictable and potentially disastrous. The error codes listed
in the appendix are self-explanatory.

VERSION 2.1
15

APPENDIX A - ERROR MESSAGES

NUMBER MESSAGE

1 Undefined Symbol
2 Label Previously Defined
3 Illegal or Missing Opcode
4 Address Not Valid
5 Accumulator Mode Not Allowed
6 Forward Reference in .BYT or .WOR
7 Ran Off End of Line
8 Label Does Not Begin with Alphabetic Character
9 Label Too Long
10 Label or Opcode Contains Non-Alphanumeric
11 Forward Reference in Equate or ORG
12 Invalid Index - Must be X or Y
13 Invalid Expression
14 Undefined Assembler Directive
15 Invalid Operand for Page Zero Mode
16 Invalid Operand for Absolute Mode
17 Relative Branch Out of Range
18 Illegal Operand Type for this Instruction
19 Out of Bounds on Indirect Addressing
20 A, X, Y, S, and P are Reserved Labels
21 Program Counter Negative - Reset to O
22 Invalid Character - Expecting "=" for ORG
23 Source Line Too Long
24 Divide by Zero in Expression
25 Symbol Table Overflow

VERSION 2.1
16

APPENDIX B - ASSEMBLER VERSION DESIGNATION

Assembler version designation is coded using the following format:

x.yy-z

x is a number greater than zero which designates the basic version of the system.

yy is a number greater than or equal to zero which designates the revision number
of the system.

z is a single letter which designates the TEA location at which the program is
designed to be run. Currently assigned designations are

DESIGNATOR TEA

S $200
P $400
A $800
T $1000
R $1400
K $2000

VERSION 2.1
17

APPENDIX C – SYMBOL LENGTH

ASM.COM V2.1X is normally set to use labels up to 16 characters in length. That is a
reasonable maximum that allows great flexibility and clarity in naming labels. However it
has two drawbacks in that it uses more memory for the label table and is somewhat
slower than a configuration that used a smaller limit, e.g., six characters.

Since the ASM source code is provided it is easy to change the maximum label length
and re-assemble the software. However, that is a time consuming operation and there
is an easier and faster way.

At TEA+3 in the TEA.COM file is a single byte defining the maximum label length.
Normally that is set to 16 as shown in the source code. If it is changed to a smaller
value, e.g., six, then ASM.COM will limit labels to that new value.

The easiest and fastest way to change that is to follow the following procedure. In this
case the C64 version is assumed with TEA set to $800. User inputs are in BOLD &
UNDERLINE.

A>debug asm.com
CAN NOT SET IRQ/BRK VECTOR
NEXT ADDRESS=2180
-d803,803
0803 10 .
-s803,6
-d803,803
0803 06 .
(control-c)
A>save 26 asm6.com

This will save a new copy of ASM.COM as ASM6.COM with the maximum label length
set to six (6).

VERSION 2.1
18

	SECTION 1 - INTRODUCTION
	1.1 OVERVIEW AND CONCEPT
	1.2 KEY FACTS

	SECTION 2 EXECUTION
	2.1 COMMON DRIVE
	2.2 INDEPENDENT DRIVES
	2.3 PRN REDIRECTION OR DELETION
	2.4 KIM DELETION

	SECTION 3 OPERATION
	3.1 LINE FORMAT
	3.1.1 LINE NUMBER
	3.1.2 LABEL
	3.1.3 OPCODE
	3.1.4 OPERAND
	3.1.5 COMMENT

	3.2 EXPRESSIONS
	3.2.1 CONSTANTS
	3.2.2 VARIABLES
	3.2.3 OPERATIONS

	3.3 CAUTIONS
	3.3.1 PAGE ZERO DEFINITIONS
	3.3.2 PAGE ZERO USAGE
	3.3.3 SYMBOL LENGTH
	3.3.4 ERRORS

	APPENDIX A - ERROR MESSAGES
	APPENDIX B - ASSEMBLER VERSION DESIGNATION
	APPENDIX C – SYMBOL LENGTH

